基于異源數(shù)據(jù)的微博好友推薦.pdf_第1頁
已閱讀1頁,還剩69頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、在互聯(lián)網(wǎng)時代,微博作為一種全新的社會化媒體,對人們?nèi)粘I畹挠绊懺絹碓酱?。然而隨著微博爆炸式的增長,商業(yè)級的微博系統(tǒng)通常都具有大量的用戶和多樣化的信息。如何從海量的微博信息中,給每個用戶提供其感興趣的信息,就顯得至關(guān)重要。
   目前在個性化推薦領(lǐng)域,傳統(tǒng)的商品推薦研究比較成熟,微博好友推薦相關(guān)的研究卻較少,已有的微博好友推薦技術(shù)幾乎都是基于單一數(shù)據(jù)源,推薦效果非常有限。本文在國內(nèi)外相關(guān)研究的基礎(chǔ)上,針對微博系統(tǒng)信息源多樣化的特

2、點(diǎn),提出了適合微博好友推薦的算法模型。
   本文首先對傳統(tǒng)電子商務(wù)領(lǐng)域中的推薦技術(shù)進(jìn)行了研究,闡述了協(xié)同過濾類的技術(shù),包括基于鄰居的協(xié)同過濾和基于模型的協(xié)同過濾。然后對目前已有的兩類微博好友推薦技術(shù)進(jìn)行了研究,包括基于社交拓?fù)浣Y(jié)構(gòu)的推薦和基于微博內(nèi)容的推薦。
   本文重點(diǎn)闡述了協(xié)同過濾類技術(shù)中的潛在因子模型及各種變種,在此基礎(chǔ)上,提出了能夠整合多種數(shù)據(jù)源特征的推薦算法模型GLFM,并用該模型模擬了各種潛在因子模型?;?/p>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論