概率潛在語(yǔ)義分析及其應(yīng)用.pdf_第1頁(yè)
已閱讀1頁(yè),還剩64頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、信息檢索的很多應(yīng)用都需要探究隱藏在字、詞背后的涵義,簡(jiǎn)單的字面匹配由于廣泛存在的同義詞多義詞現(xiàn)象,往往得不到能夠和查詢(xún)?cè)诤x上精確匹配的檢索結(jié)果。概率潛在語(yǔ)義分析(即PLSA,Probabilistic Latent SemanticAnalysis)通過(guò)概率的形式建立了將隱含變量與共現(xiàn)數(shù)據(jù)對(duì)(如詞匯與文檔)聯(lián)系起來(lái)的模型,使用統(tǒng)計(jì)的方法建立了“文檔-潛在語(yǔ)義-詞語(yǔ)”三者之間概率分布關(guān)系,并利用這種概率進(jìn)行基于統(tǒng)計(jì)的語(yǔ)義分析,從中得到同

2、一個(gè)主題下不同詞的分布參數(shù)以及同一篇文檔下不同主題的分布參數(shù),從而能夠從語(yǔ)義的層面上而不再是以往的單純的字面意義上去表達(dá)和理解文檔。在語(yǔ)義空間上,能夠?qū)ξ臋n做出更精準(zhǔn)的匹配,排序,相關(guān)性查詢(xún)等操作。本文主要研究概率潛在語(yǔ)義分析的稀疏表達(dá)框架以及并行化擴(kuò)展,主要貢獻(xiàn)有:
   ●提出了一種在PLSA框架下高效地引入稀疏表達(dá)的方法,通過(guò)添加稀疏度控制在兩個(gè)模型參數(shù)上以解決傳統(tǒng)的PLSA存在的過(guò)擬合以及無(wú)法提取局部特征的問(wèn)題。本文實(shí)驗(yàn)

3、證實(shí)本文所述方法在準(zhǔn)確度上超越了已有的PLSA算法,并且在性能有杰出表現(xiàn)。
   ●提出了在分布式處理框架下高效地訓(xùn)練PLSA模型的方法,分別設(shè)計(jì)實(shí)現(xiàn)了基于多核處理器的多線程PLSA算法,以及基于Hadoop和基于MPI的的并行化PLSA算法,討論了在實(shí)際應(yīng)用中的具體細(xì)節(jié)和問(wèn)題,最后在集群上進(jìn)行了實(shí)驗(yàn)和性能評(píng)估。
   ●探索嘗試了將PLSA用于個(gè)性化RSS文章排序的方法,通過(guò)記錄用戶閱讀
   文章所消耗的時(shí)間

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論