版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、眾所周知,網(wǎng)絡(luò)信息技術(shù)發(fā)展的速度相當(dāng)驚人,信息增長(zhǎng)速度越來(lái)越快,人類(lèi)面臨的信息量已經(jīng)十分龐大,怎么樣在這樣巨大的數(shù)據(jù)量中找到人類(lèi)需要的信息,滿(mǎn)足人類(lèi)的需求,成為了人類(lèi)面臨的一大問(wèn)題,使用計(jì)算機(jī)對(duì)文本進(jìn)行自動(dòng)化分類(lèi)的技術(shù)能夠在很大程度上幫助人們解決這個(gè)問(wèn)題。文本分類(lèi)技術(shù)是自然語(yǔ)言處理領(lǐng)域和模式識(shí)別領(lǐng)域的一大課題,它誕生于20世紀(jì)50年代末,最初被使用于圖書(shū)管理領(lǐng)域,經(jīng)過(guò)好幾代學(xué)者的研究到今天,這門(mén)技術(shù)已經(jīng)從青澀變得成熟。近年來(lái)文本分類(lèi)技術(shù)
2、已經(jīng)應(yīng)用到信息檢索,信息推送,信息過(guò)濾等多個(gè)領(lǐng)域,并且為人類(lèi)提供了更好的信息化的服務(wù)。研究文本分類(lèi)技術(shù)對(duì)我們有著很大的意義,它可以幫我們減少信息獲取的時(shí)間,更好的取得信息,同時(shí)也有利于我們對(duì)信息更好地分類(lèi)整理。
本文完成了一個(gè)使用向量空間模型(VSM)的文本分類(lèi)系統(tǒng),在文本分類(lèi)預(yù)處理階段,使用了基于隱馬爾科夫模型(HMM)的分詞方法將文本轉(zhuǎn)化成為詞袋的表示形式。在文本特征項(xiàng)選取過(guò)程中,采用了開(kāi)方測(cè)試(CHI統(tǒng)計(jì)量)和互信息法進(jìn)
3、行特征項(xiàng)選取。
在特征項(xiàng)特征權(quán)重賦值方面,本文參考了眾多論文對(duì)改進(jìn)的TF-IDF的特征權(quán)重賦值方法的描述,探討并且采用了TF-IDF的改進(jìn)版本作為本文涉及的文本分類(lèi)系統(tǒng)的特征權(quán)重函數(shù)。
在分類(lèi)器選擇方面,本文借鑒了比較成熟,高效的支持向量機(jī)技術(shù),支持向量機(jī)是向量空間模型的一種實(shí)現(xiàn),并且使用臺(tái)灣大學(xué)林老師的LIBSVM對(duì)文本進(jìn)行分類(lèi),同時(shí)本文深入探討了支持向量機(jī)技術(shù)。
本文所涉及的文本分類(lèi)系統(tǒng)從工程實(shí)際角度出
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于VSM的網(wǎng)頁(yè)文本分類(lèi)技術(shù)研究.pdf
- 基于擴(kuò)展的VSM中文文本分類(lèi)方法.pdf
- 基于hadoop的文本分類(lèi)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)
- 基于Hadoop的文本分類(lèi)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn).pdf
- 一種基于VSM模型的動(dòng)態(tài)文本分類(lèi)器的設(shè)計(jì).pdf
- 文本分類(lèi)系統(tǒng)的研究和實(shí)現(xiàn)—基于WorNet知識(shí).pdf
- 文本分類(lèi)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn).pdf
- 基于KNN算法的文本分類(lèi)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn).pdf
- 多級(jí)文本分類(lèi)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn).pdf
- 基于文本分類(lèi)的知識(shí)管理系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn).pdf
- 基于SVM的中文文本分類(lèi)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn).pdf
- 基于文本分類(lèi)的問(wèn)答系統(tǒng)的研究與實(shí)現(xiàn).pdf
- 基于優(yōu)化類(lèi)中心分類(lèi)算法的文本分類(lèi)系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn).pdf
- 特定領(lǐng)域文本分類(lèi)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn).pdf
- 基于SVm-KNN的文本分類(lèi)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn).pdf
- 哈薩克語(yǔ)文本分類(lèi)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn).pdf
- 基于WEB的文本分類(lèi)算法研究及系統(tǒng)實(shí)現(xiàn).pdf
- 基于SVM算法的文本分類(lèi)器的實(shí)現(xiàn).pdf
- 網(wǎng)絡(luò)教育新聞文本分類(lèi)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn).pdf
- 基于文本分類(lèi)技術(shù)的客戶(hù)投訴智能分析系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn).pdf
評(píng)論
0/150
提交評(píng)論