2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩61頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、華中科技大學(xué)碩士學(xué)位論文數(shù)據(jù)挖掘技術(shù)及其在徑流預(yù)報中的研究與應(yīng)用姓名:許惠君申請學(xué)位級別:碩士專業(yè):水利水電工程指導(dǎo)教師:張勇傳20060512IIAbatract Data Mining is a newly developing technology based on machine study in artificial intelligence and database. it's an advanced process

2、 which is obtained from abundant of incomplete, noised, fuzzy and stochastic real data, and it's concealed, unknown, believable, novel, efficiency and comprehensible pattern to us. Applications of using data mining t

3、echnology in hydrological forecasting will be more widely applied and makes more practical value. After describing the current research situation of data mining and hydrological forecasting, this paper discuss the archit

4、ecture model of hydrological forecasting system, and then the thesis puts emphasis on studying of runoff forecasting which based on the technology of data mining. This article has six chapters: Chapter 1 Mainly summarize

5、s the content and significance of this article, the theory of the data mining technology as well as its development. Chapter 2 introduces the current research situation of hydrological forecasting and emphasizes on the

6、 forecasting method of neural network. Then this article analyzes and compares all kinds of methods for the hydrological forecasting The design process of long term runoff forecasting is presented in chapter 3, particula

7、rly the choosing strategy of the neural network structure, the method of dealing with original data and the studying and forecasting process of runoff forecasting model which adopts the BP algorithm. Chapter 4 introduce

8、s the design and realization of database of the forecasting model. Chapter 5 introduces the forecasting effect of the long term runoff forecasting model. Comparing with common forecasting model, it is proved that this mo

9、del has better precision, and makes more practical value. Chapter 6 sums up the paper and puts forward the working plan in the future. Key words: Data Mining Hydrological Forecasting Artificial Neural Network BP Al

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論