版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 翻譯部分</b></p><p><b> 英文原文</b></p><p> Coal Face Wireless Sensor Network Physical Layer Design Based On UWB Technology</p><p> Abstract <
2、;/p><p> In order to guarantee the safety of coal face production, it is necessary to monitor and surveillance face Shearer, scraper transport planes, hydraulic support, transport machines, broken machines
3、etc . At present, it is difficult for the cable transmission mode to adapt to changes in the work site of the coal face. Transmission lines are often damaged and snapped for various factors, we use wireless sensor netw
4、ork (WSN), which is flexible to be placed and extensible, to resolve this proble</p><p> Introduction </p><p> Coal face must face the complicated geological conditions and poor working
5、conditions. In order to ensure the safety of production in the coal face, it is necessary to monitor real-time the face Shearer, scraper transport machine, hydraulic support, reprint machine, broken machines and other la
6、rge equipments. In addition, we must monitor the ground pressure, gas, carbon monoxide, dust and other environmental parameters. At the same time, mobile voice and image communications is required. At pr</p><
7、;p> WSN architecture in the coal face </p><p> The sensor network system structure of the mining Coal face is shown in Figure 1. In this Figure, the sensor nodes send the information of acquistion
8、through one or more jumps to the cluster node, the base station (sink node) is responsible for the collection of data, and transmit them to task management node through up-slot network, task management Node is responsibl
9、e for the integrated process the data and also issued instruction to sensor networks. The tunnel of coal face is a limited space. </p><p> the design of transceiver node of it is particularly important. At
10、present, there are three main technologies of the physical layer in wireless sensor networks: narrow-band modulation technology, spread spectrum technology and ultra-wideband (UWB) technology. While UWB technology posses
11、ses some attractive advantages such as low power spectrum density, low-complexity system, Low sensitivity to the channel fading, better security and so on. Considering the advantages and the characteristics of </p&
12、gt;<p> The modulation of IR-UWB are mainly PAM (OOK), PPM and BPM (Bi-Phase Modulation), but the presence of lines spectrum in PAM and PPM not only make ultra-wideband pulse signal difficult to meet a certain
13、spectrum Requirements, but also reduce the power utilization, thereby it increases energy consumption. Several IR-UWB signals in the frequency spectrum are shown in Figure 2 and Figure 3 . As WSN system requires low powe
14、r consumption, PAM modulation often use OOK method, which has simple structu</p><p> A. The design of transmitting system </p><p> The transmitter which adopts BPM forms is shown in Figure
15、4. The signal distortion, interference and noise brought by the special environment in coal face need encoded protection through channel coding interweave module. Data rate of the original information is lower, which mak
16、e it difficult to meet the requirements of FCC in the absence of modulation. We need to use spread spectrum code transform the original information which has a larger duration ratio into a smaller duration ratio (nanosec
17、on</p><p> The system uses Gaussian pulse to be the form of UWB signal. If a wave transmitted is the first order derivative Rayleigh pulse, the signal after sending out through the antenna is transformed to
18、 be the second order derivative of the Gaussian pulse in ideal circumstances. In addition, the lower the order of the Gaussian pulse is, the farther the signal can be sent under the same data rate. Here we select the G
19、aussian doublet, whose hardware circuit is relatively easy to implement and consume</p><p> Here, is used to express the pulse width, Suppose that the input signal is , each bit is expressed by and its
20、 cycle is.After the channel encoder, every bit of the sequence kare repeated by N times. The code duration time is , so each bit is composed by N pulse width. If we suppose the pseudo-random sequence of sensors node k
21、is , the length of the sequence is N, the duration of the code slice is The sequence of can be replaced by and the .The time coordinate of i-th bit in the frame dat</p><p> when when .We can think in p
22、ractical application.</p><p> When N=1, the UWB waves and waveform sent are shown in the Figure 5. Waveform in the Figure from the top to the end is the UWB waveform (the waveform of code “0” and the wave
23、form “1”); the waveform generated when several code are send out; UWB waveform when get through band-pass filter. </p><p> B. The design of receiver system </p><p> The recerver structure
24、is shown in figure 6. The signal received through the receiving antenna will go through the low noise amplifier and filter. Then the amplitude of the signal will be detected using tunnel diodes peak detector. Then we ca
25、n get a pulse waveform which own longer code duration time when the signal detected after passing through high-pass filter and pulse stretch circuit. The last step is sample and judge.</p><p> In this desig
26、n, we make use of the characters of the negative resistance region of tunnel diode. In this region, the current decreases as the voltage is increased. This negative resistance results in a very fast switching time. After
27、 detected by the tunnel and passed through high-pass filter and comparator, the signal can be stretched and delayed by RS latch. We can directly sampling and judge the signal, for the width of the signal we get is wide
28、r than we first received .The kind of the rec</p><p> C. Anti-noise performance of BPM </p><p> The propagation environment of the coal face belongs to dense multi-path. And the theoretica
29、l channel model we referred to is proposed by combining Saleh-Valenzu channel model, which is the foundation, and the characteristic of the coal face under the mine. Suppose the discrete pulse response is, r(t) is the si
30、gnal received by one node. Then , . </p><p> The distance between receiver and transmitter is about 5-8 meters, which can satisfy the requirement of the distribution of the nodes in the coal face. The code
31、 duration time is 25ns, the duration time of GASSION waves is80ps. Under this conditions , we can get the curve, just as shown in the Figure 8.</p><p> In fact, when we carried out the experiment of BER t
32、est, the performance shown in Figure 8 is not easy to be seen because of the complexity of the channel character. According to the research result, the performance of anti-noise became abnormal, such as the fading of th
33、e signal is not in proportion to the distance and the amount of the path increase and decrease in a large scale. </p><p> Because the relevant coefficient of transmitted waves of the BPM is passive relevan
34、ce when we adopted relevant receiver, the performance of anti-noise of BPM in relevant receiver is superior to PPM and OOK. Take the structure simplification of the receiver and the special character of the coal face int
35、o consideration, BPM is preferable in the whole,ever if the receiver we discussed in this paper is not superior to the relevant receiver on the anti-noise performance. </p><p> Conclusion </p><p
36、> Because of the limited space of a non-uniform medium and the complicated channel character in the coal face, the choice of the model we send and receive the signal is extremely important. Taking into account that
37、BPM do not have discrete spectrum when “0” and ”1” emerged in a same probability, if not, the amount of discrete spectrum is small, which is attractive to WSN system, for the low energy consumption is strongly requir
38、ed. Therefore, the communication mode can be used in the coal face</p><p><b> 中文譯文</b></p><p> 采煤工作面無(wú)線傳感器網(wǎng)絡(luò)物理層設(shè)計(jì)UWB技術(shù)</p><p><b> 摘要</b></p><p&g
39、t; 為了保證安全生產(chǎn)的工作面,監(jiān)測(cè)和監(jiān)視采煤機(jī),刮板運(yùn)輸機(jī),液壓支架,運(yùn)輸機(jī)械,破碎機(jī)等是必要的。目前,它是很難的電纜傳輸模式,以適應(yīng)變化的工作場(chǎng)所的采煤工作面。因?yàn)楦鞣N各樣的因素輸電線路被損壞和折斷,我們使用無(wú)線傳感器網(wǎng)絡(luò)(無(wú)線傳感器網(wǎng)絡(luò)) ,可以靈活的放置和可擴(kuò)展性來(lái)解決這一問題。本文討論了設(shè)計(jì)中的無(wú)線傳感器網(wǎng)絡(luò)收發(fā)工作面與UWB技術(shù)。這種收發(fā)器有一些有用的優(yōu)勢(shì),如成本低,能耗低,結(jié)構(gòu)簡(jiǎn)單,易于實(shí)現(xiàn)的設(shè)計(jì),硬件,無(wú)需估計(jì)工作面通
40、道的特點(diǎn)。然而,探測(cè)效率略低,但錯(cuò)誤率能滿足要求。</p><p><b> 1 、導(dǎo)言</b></p><p> 采煤工作面必須面對(duì)復(fù)雜地質(zhì)條件和工作條件差等問題。為了確保安全生產(chǎn)的工作面,以監(jiān)測(cè)實(shí)時(shí)面對(duì)采煤機(jī),刮板運(yùn)輸機(jī)械,液壓支架,轉(zhuǎn)載機(jī),破碎機(jī)和其他大型設(shè)備是必要的。此外,我們必須監(jiān)測(cè)地面的壓力、天然氣、一氧化碳、灰塵及其他環(huán)境參數(shù)。同時(shí),移動(dòng)語(yǔ)音和圖像通
41、信是必需的。目前,信號(hào)監(jiān)測(cè)來(lái)自于采煤工作面的電纜。由于面臨正在持續(xù)不斷的煤炭開采過程中,各種大型鋼鐵設(shè)備的采煤工作面需要推動(dòng)和不斷循環(huán)??臻g的形狀是不斷變化在設(shè)備相對(duì)位置變化的同時(shí)。相應(yīng)地,通訊電纜是難以適用于不斷變化的工作場(chǎng)景,使輸電線路損壞或終結(jié)頻繁和使采煤工作面的移動(dòng)語(yǔ)音和圖像通信不可能。所有這些問題都造成許多潛在安全生產(chǎn)的麻煩。我們認(rèn)為無(wú)線傳感器網(wǎng)絡(luò)(無(wú)線傳感器網(wǎng)絡(luò))是可行的實(shí)施監(jiān)測(cè)和監(jiān)督的工作面,因?yàn)樗蟹胖渺`活,擴(kuò)展簡(jiǎn)單,移
42、動(dòng)方便,自主調(diào)節(jié)等一些有用的特性。</p><p> 2 、無(wú)線傳感器網(wǎng)絡(luò)體系結(jié)構(gòu)中的采煤工作面</p><p> 傳感器網(wǎng)絡(luò)系統(tǒng)結(jié)構(gòu)的采礦工作面是如圖1所示。圖形中,該傳感器節(jié)點(diǎn)發(fā)送的信息的采集,通過一個(gè)或多個(gè)跳躍的群集節(jié)點(diǎn),基站(匯節(jié)點(diǎn))負(fù)責(zé)數(shù)據(jù)的收集,并傳輸給任務(wù)管理節(jié)點(diǎn),通過了插槽網(wǎng)絡(luò),任務(wù)管理節(jié)點(diǎn)負(fù)責(zé)綜合處理數(shù)據(jù),并對(duì)傳感器網(wǎng)絡(luò)發(fā)出指示。隧道工作面是一個(gè)有限的空間。支架,采煤
43、機(jī),運(yùn)輸和其他大型金屬設(shè)備的布局和煤,巖石和其他媒體是一個(gè)非均勻受限制的空間,這一切使傳輸通道更加復(fù)雜,傳輸無(wú)線傳感器節(jié)點(diǎn)的信號(hào)衰退和多路徑的現(xiàn)象較為嚴(yán)重。這些是傳感器網(wǎng)絡(luò)在地面上不同的。因此,收發(fā)器的設(shè)計(jì)節(jié)點(diǎn)來(lái)說(shuō)尤其重要。目前,有三個(gè)主要技術(shù)的物理層的無(wú)線傳感器網(wǎng)絡(luò):窄帶調(diào)制技術(shù),擴(kuò)頻技術(shù)和超寬帶( UWB )技術(shù)。雖然UWB技術(shù)具有一定吸引力的優(yōu)勢(shì),如低功率譜密度,低復(fù)雜系統(tǒng),低靈敏度的頻道衰落,更好的安全性,等等??紤]到工作面的優(yōu)
44、勢(shì)和特點(diǎn),我們已經(jīng)采用脈沖無(wú)線電超寬帶公司( IR - UWB )技術(shù),原因是: 1 ) UWB技術(shù)消耗低功耗和低功率譜。低功耗,低成本和小尺寸是最重要的特點(diǎn),無(wú)線傳感器網(wǎng)絡(luò)節(jié)點(diǎn)。窄帶調(diào)制技術(shù),擴(kuò)頻調(diào)制技術(shù),通常使用正弦載波,中頻和射頻電路中存在的系統(tǒng),所以消耗更多的功耗比UWB技術(shù)。傳</p><p> 調(diào)節(jié)紅外UWB的主要是脈沖幅度放大調(diào)制( OOK ) , PPM和BPM(雙相位調(diào)制) ,但存在的脈沖幅度
45、放大調(diào)制和PPM不僅使超寬帶脈沖信號(hào)難以滿足一定的頻譜要求,還減少用電,從而增加能源消耗。幾個(gè)紅外超寬帶信號(hào)的頻譜如圖2和圖3 所示。由于無(wú)線傳感器網(wǎng)絡(luò)系統(tǒng)需要低功耗,脈沖幅度放大調(diào)制經(jīng)常使用OOK調(diào)制方法,它結(jié)構(gòu)簡(jiǎn)單。但是OOK一直表現(xiàn)不佳的誤碼率(誤碼率) ,抗噪性能的BPM調(diào)制如反抖動(dòng)噪聲更好。工業(yè)標(biāo)準(zhǔn)將會(huì)加強(qiáng),如果我們通過手冊(cè)的情況下,密集多徑環(huán)境的采煤工作面。因此,我們使用BPM形式收發(fā)器系統(tǒng)的工作面。</p>
46、<p><b> A、傳輸系統(tǒng)的設(shè)計(jì)</b></p><p> 變送器采用的BPM形式如圖4所示。信號(hào)失真,干擾和噪音所帶來(lái)的特殊環(huán)境工作面需要編碼保護(hù)信道編碼交織模塊。數(shù)據(jù)傳輸速率的原始資料較低,這使得它在未模塊化時(shí)難以滿足FCC的要求。我們需要利用擴(kuò)頻碼轉(zhuǎn)換的原始資料,由較大的時(shí)間比轉(zhuǎn)換到一個(gè)較小的時(shí)間比率(納秒) 。然后,我們可以通過脈沖形成電路產(chǎn)生脈沖信號(hào)的BPM,可滿
47、足要求FCC的要求。最后使用過濾器來(lái)優(yōu)化BMP進(jìn)一步放大信號(hào)的頻譜,并把它從天線發(fā)送出去。</p><p> 該系統(tǒng)使用的高斯脈沖形式的UWB信號(hào)。如果波傳播的是一階導(dǎo)數(shù)的Rayleigh脈沖信號(hào)發(fā)出后,在理想的情況通過天線轉(zhuǎn)化為二階導(dǎo)數(shù)的高斯脈沖。此外,較低的順序高斯脈沖是,在更遠(yuǎn)的信號(hào)可以發(fā)送出相同的數(shù)據(jù)速率。在這里,我們選擇高斯雙,其硬件電路比較容易執(zhí)行和降低能源消耗。雖然干涉窄帶通信系統(tǒng)中存在地面無(wú)線通
48、信,高階的高斯是更好地高斯窄脈沖形狀。但是,在采煤工作面我們并不需要考慮干擾其他窄帶通信,迄今為止,無(wú)線通信系統(tǒng)基本上在礦采煤工作面不存在的。第二高斯脈沖形狀可以表示為:</p><p> 在這里是用來(lái)表示脈沖寬度,假設(shè)輸入信號(hào)是,每個(gè)位表示其周期。通道編碼后,每一個(gè)位的序列重復(fù)了N次。代碼持續(xù)時(shí)間,所以每比特由N脈沖寬度組成。如果我們假設(shè)的偽隨機(jī)序列的傳感器節(jié)點(diǎn)K是,長(zhǎng)度為N的順序,時(shí)間的長(zhǎng)短碼片序列可被和替
49、代。時(shí)間坐標(biāo)的i-th框架傳感器節(jié)點(diǎn)K發(fā)出的。</p><p> 當(dāng)當(dāng),我們可以認(rèn)為在實(shí)際應(yīng)用中當(dāng)N = 1 時(shí), UWB波和波形傳送顯示如圖5 。波形圖中從頂部到底的超寬帶波形是UWB波形(波形的代碼“ 0 ”和波形“ 1 ” ) ; 當(dāng)幾個(gè)代碼發(fā)送波形產(chǎn)生; 通過帶通濾波器獲得UWB脈沖。</p><p><b> B、接收系統(tǒng)的設(shè)計(jì)</b></p>
50、;<p> 接收結(jié)構(gòu)見圖6 。通過接收天線將通過低噪聲放大器和濾波器收到信號(hào)。然后振幅的信號(hào)將被檢測(cè)隧道二極管峰值檢測(cè)器查處。然后我們就可以得到一個(gè)長(zhǎng)持續(xù)時(shí)間代碼的脈沖波形 ,這個(gè)信號(hào)檢測(cè)經(jīng)過高通濾波和脈沖伸展的電路。最后一步是取樣和判斷。</p><p> 在這個(gè)設(shè)計(jì)里,我們使用字符的負(fù)阻區(qū)的隧道二極管。在這一區(qū)域,目前的下跌是由于電壓增加。這種消極抵抗的結(jié)果導(dǎo)致非??斓那袚Q時(shí)間。經(jīng)過檢測(cè)隧道
51、和通過高通濾波器和比較器,信號(hào)可以延伸和延時(shí)遙感門閂。我們能直接取樣和判斷信號(hào),因?yàn)樾盘?hào)的寬度,我們得到的比我們第一次收到更廣泛。接收的種類不同于我們以前使用的方法。例如,文獻(xiàn)555告訴有關(guān)接收器的技術(shù)。正如我們所知,一般相關(guān)接收器的本身集成的電路、精確時(shí)鐘的復(fù)雜性是要高得多。有時(shí),一般要求信道估計(jì)有關(guān)接收機(jī)需要匹配濾波器據(jù)信道模型參數(shù)。由于地下煤層通道特性極其復(fù)雜,使用信道估計(jì)的可能性就很小了。此外,接收不需要的ADC轉(zhuǎn)換設(shè)備,因?yàn)楸?/p>
52、較器有固定的位置代碼“ 0 ”和“ 1 ” 。此外,拉伸的代碼有一個(gè)相對(duì)較長(zhǎng)的持續(xù)時(shí)間,這并不需要較高的判斷脈沖精度。因此,整體而言,接收器并不需要復(fù)雜的信道估計(jì)和ADC轉(zhuǎn)換裝置,使能源消耗和復(fù)雜性大大降低。但是,我們不能忽視的缺點(diǎn)是這種接收機(jī)有更大的信號(hào)衰減,較低的檢測(cè)效率。</p><p> C、BPM的抗噪聲性能</p><p> 采煤工作面的傳播環(huán)境屬于密集多徑型。我們提到的信
53、道模型的理論被建議和Saleh-Valenzu的渠道模式相結(jié)合,這是礦井采煤工作面的基礎(chǔ)和特征。假設(shè)離散脈沖響應(yīng)為,r(t)是所收到的信號(hào)的一個(gè)節(jié)點(diǎn)。那么, . </p><p> 接收器和發(fā)射器之間的距離約5-8米,可滿足節(jié)點(diǎn)在采煤工作面的分布要求。代碼持續(xù)時(shí)間是25ns ,持續(xù)時(shí)間的GASSION波是80ps 。根據(jù)這一條件,我們可以得到的曲線,正如圖8中所示.</p><p>
54、 事實(shí)上,當(dāng)我們進(jìn)行了實(shí)驗(yàn)的誤碼率測(cè)試,因?yàn)槊簩油ǖ缽?fù)雜性的特點(diǎn)性能如圖8是不容易看到的。根據(jù)研究結(jié)果,抗噪聲性能變得異常,如衰落的信號(hào)和距離和路徑數(shù)額的大規(guī)模增加和減少不成比例的。</p><p> 因?yàn)楫?dāng)我們采用相關(guān)的接收器,BMP傳輸波的相關(guān)系數(shù)為被動(dòng)關(guān)聯(lián),高性能的抗噪聲的BPM相關(guān)接收機(jī)優(yōu)于PPM和OOK 。考慮到結(jié)構(gòu)簡(jiǎn)化的接收器和以及特殊性質(zhì)的采煤工作面,即使我們?cè)诒疚挠懻摰慕邮掌鞑粌?yōu)于有關(guān)接收機(jī)的抗
55、噪聲性能,BMP從整體上看是較合適。</p><p><b> 3 、結(jié)論</b></p><p> 由于有限的空間的非均勻介質(zhì)和復(fù)雜的通道性質(zhì)的采煤工作面,我們發(fā)送和接收的信號(hào)的模式選擇是非常重要的??紤]到的BPM沒有離散頻譜時(shí), “ 0 ”和“ 1 ”出現(xiàn)在相同的概率,如果沒有,離散頻譜的數(shù)額就小,對(duì)能耗低的強(qiáng)烈要求是無(wú)線傳感器網(wǎng)絡(luò)系統(tǒng)具有的吸引力。因此,通信
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 采煤工作面無(wú)線傳感器網(wǎng)絡(luò)物理層設(shè)計(jì)uwb技術(shù)
- 采煤工作面無(wú)線傳感器網(wǎng)絡(luò)物理層設(shè)計(jì)uwb技術(shù)
- 應(yīng)用UWB信號(hào)的無(wú)線傳感器網(wǎng)絡(luò)物理層時(shí)間同步方法.pdf
- 無(wú)線傳感器網(wǎng)絡(luò)物理層和MAC層協(xié)議研究.pdf
- 無(wú)線傳感器網(wǎng)絡(luò)物理層的主動(dòng)同步技術(shù)研究.pdf
- 基于ZigBee技術(shù)的無(wú)線傳感器網(wǎng)絡(luò)物理層與MAC層研究與設(shè)計(jì).pdf
- CDMA在無(wú)線傳感器網(wǎng)絡(luò)物理層的研究與應(yīng)用.pdf
- 水下傳感器網(wǎng)絡(luò)物理層的設(shè)計(jì)與實(shí)現(xiàn).pdf
- 無(wú)線傳感器網(wǎng)絡(luò)的測(cè)距技術(shù)外文翻譯
- 基于MB-OFDM-UWB的井下多媒體傳感器網(wǎng)絡(luò)物理層自適應(yīng)技術(shù)研究.pdf
- 外文翻譯-無(wú)線傳感器網(wǎng)絡(luò)專題翻譯.doc
- 無(wú)線傳感器網(wǎng)絡(luò)路由協(xié)議【外文翻譯】
- 外文翻譯---車載無(wú)線傳感器網(wǎng)絡(luò)監(jiān)測(cè)系統(tǒng)設(shè)計(jì)
- 基于UWB無(wú)線傳感器網(wǎng)絡(luò)的定位技術(shù)研究.pdf
- 無(wú)線傳感器網(wǎng)絡(luò)跨層設(shè)計(jì).pdf
- [雙語(yǔ)翻譯]無(wú)線傳感器網(wǎng)絡(luò)外文翻譯--基于zigbee的無(wú)線傳感器網(wǎng)絡(luò)水質(zhì)監(jiān)測(cè)系統(tǒng)
- [雙語(yǔ)翻譯]無(wú)線傳感器網(wǎng)絡(luò)外文翻譯--基于zigbee的無(wú)線傳感器網(wǎng)絡(luò)水質(zhì)監(jiān)測(cè)系統(tǒng)(英文)
- IR-UWB無(wú)線傳感器網(wǎng)絡(luò)定位技術(shù)的研究.pdf
- 無(wú)線協(xié)同網(wǎng)絡(luò)物理層網(wǎng)絡(luò)編碼技術(shù).pdf
- 海面無(wú)線傳感器網(wǎng)絡(luò)實(shí)時(shí)監(jiān)測(cè)系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn).pdf
評(píng)論
0/150
提交評(píng)論