版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p> Failure Analysis,Dimensional Determination And Analysis,Applications Of Cams</p><p> Jack Bauble</p><p> Abstract:It is absolutely essential that a design engineer know how and why
2、parts fail so that reliable machines that require minimum maintenance can be designed;Cams are among the most versatile mechanisms available.A cam is a simple two-member device.The input member is the cam itself,while th
3、e output member is called the follower.Through the use of cams,a simple input motion can be modified into almost any conceivable output motion that is desired.</p><p> Key words: failure high-speed cams d
4、esign properties</p><p> INTRODUCTION</p><p> It is absolutely essential that a design engineer know how and why parts fail so that reliable machines that require minimum maintenance can be de
5、signed.Sometimes a failure can be serious,such as when a tire blows out on an automobile traveling at high speed.On the other hand,a failure may be no more than a nuisance.An example is the loosening of the radiator hose
6、 in an automobile cooling system.The consequence of this latter failure is usually the loss of some radiator coolant,a condition that </p><p> The type of load a part absorbs is just as significant as the m
7、agnitude.Generally speaking,dynamic loads with direction reversals cause greater difficulty than static loads,and therefore,fatigue strength must be considered.Another concern is whether the material is ductile or brittl
8、e.For example,brittle materials are considered to be unacceptable where fatigue is involved.</p><p> Many people mistakingly interpret the word failure to mean the actual breakage of a part.However,a design
9、 engineer must consider a broader understanding of what appreciable deformation occurs.A ductile material,however will deform a large amount prior to rupture.Excessive deformation,without fracture,may cause a machine to
10、fail because the deformed part interferes with a moving second part.Therefore,a part fails(even if it has not physically broken)whenever it no longer fulfills its required fun</p><p> In general,the design
11、engineer must consider all possible modes of failure,which include the following.</p><p><b> ——Stress</b></p><p> ——Deformation</p><p><b> ——Wear</b></
12、p><p> ——Corrosion</p><p> ——Vibration</p><p> ——Environmental damage</p><p> ——Loosening of fastening devices</p><p> The part sizes and shapes selected
13、 also must take into account many dimensional factors that produce external load effects,such as geometric discontinuities,residual stresses due to forming of desired contours,and the application of interference fit join
14、ts.</p><p> Cams are among the most versatile mechanisms available.A cam is a simple two-member device.The input member is the cam itself,while the output member is called the follower.Through the use of ca
15、ms,a simple input motion can be modified into almost any conceivable output motion that is desired.Some of the common applications of cams are</p><p> ——Camshaft and distributor shaft of automotive engine &
16、lt;/p><p> ——Production machine tools</p><p> ——Automatic record players</p><p> ——Printing machines</p><p> ——Automatic washing machines</p><p> ——Autom
17、atic dishwashers</p><p> The contour of high-speed cams (cam speed in excess of 1000 rpm) must be determined mathematically.However,the vast majority of cams operate at low speeds(less than 500 rpm) or medi
18、um-speed cams can be determined graphically using a large-scale layout.In general,the greater the cam speed and output load,the greater must be the precision with which the cam contour is machined.</p><p>
19、DESIGN PROPERTIES OF MATERIALS</p><p> The following design properties of materials are defined as they relate to the tensile test.</p><p> Static Strength. The strength of a part is the maxim
20、um stress that the part can sustain without losing its ability to perform its required function.Thus the static strength may be considered to be approximately equal to the proportional limit,since no plastic deformation
21、takes place and no damage theoretically is done to the material.</p><p> Stiffness. Stiffness is the deformation-resisting property of a material.The slope of the modulus line and,hence,the modulus of elast
22、icity are measures of the stiffness of a material.</p><p> Resilience. Resilience is the property of a material that permits it to absorb energy without permanent deformation.The amount of energy absorbed i
23、s represented by the area underneath the stress-strain diagram within the elastic region.</p><p> Toughness. Resilience and toughness are similar properties.However,toughness is the ability to absorb energy
24、 without rupture.Thus toughness is represented by the total area underneath the stress-strain diagram, as depicted in Figure 2.8b.Obviously,the toughness and resilience of brittle materials are very low and are approxima
25、tely equal.</p><p> Brittleness. A brittle material is one that ruptures before any appreciable plastic deformation takes place.Brittle materials are generally considered undesirable for machine components
26、because they are unable to yield locally at locations of high stress because of geometric stress raisers such as shoulders,holes,notches,or keyways.</p><p> Ductility. A ductility material exhibits a large
27、amount of plastic deformation prior to rupture.Ductility is measured by the percent of area and percent elongation of a part loaded to rupture.A 5%elongation at rupture is considered to be the dividing line between ducti
28、le and brittle materials.</p><p> Malleability. Malleability is essentially a measure of the compressive ductility of a material and,as such,is an important characteristic of metals that are to be rolled in
29、to sheets.</p><p> Hardness. The hardness of a material is its ability to resist indentation or scratching.Generally speaking,the harder a material,the more brittle it is and,hence,the less resilient.Also,t
30、he ultimate strength of a material is roughly proportional to its hardness.</p><p> Machinability. Machinability is a measure of the relative ease with which a material can be machined.In general,the harder
31、 the material,the more difficult it is to machine. </p><p> COMPRESSION AND SHEAR STATIC STRENGTH</p><p> In addition to the tensile tests,there are other types of static load testing that pro
32、vide valuable information.</p><p> Compression Testing. Most ductile materials have approximately the same properties in compression as in tension.The ultimate strength,however,can not be evaluated for comp
33、ression.As a ductile specimen flows plastically in compression,the material bulges out,but there is no physical rupture as is the case in tension.Therefore,a ductile material fails in compression as a result of deformati
34、on,not stress.</p><p> Shear Testing. Shafts,bolts,rivets,and welds are located in such a way that shear stresses are produced.A plot of the tensile test.The ultimate shearing strength is defined as the str
35、ess at which failure occurs.The ultimate strength in shear,however,does not equal the ultimate strength in tension.For example,in the case of steel,the ultimate shear strength is approximately 75% of the ultimate strengt
36、h in tension.This difference must be taken into account when shear stresses are encountered in ma</p><p> DYNAMIC LOADS</p><p> An applied force that does not vary in any manner is called a st
37、atic or steady load.It is also common practice to consider applied forces that seldom vary to be static loads.The force that is gradually applied during a tensile test is therefore a static load.</p><p> On
38、 the other hand,forces that vary frequently in magnitude and direction are called dynamic loads.Dynamic loads can be subdivided to the following three categories.</p><p> Varying Load. With varying loads,th
39、e magnitude changes,but the direction does not.For example,the load may produce high and low tensile stresses but no compressive stresses.</p><p> Reversing Load. In this case,both the magnitude and directi
40、on change.These load reversals produce alternately varying tensile and compressive stresses that are commonly referred to as stress reversals.</p><p> Shock Load. This type of load is due to impact.One exam
41、ple is an elevator dropping on a nest of springs at the bottom of a chute.The resulting maximum spring force can be many times greater than the weight of the elevator,The same type of shock load occurs in automobile spri
42、ngs when a tire hits a bump or hole in the road.</p><p> FATIGUE FAILURE-THE ENDURANCE LIMIT DIAGRAM</p><p> The test specimen in Figure 2.10a.,after a given number of stress reversals will ex
43、perience a crack at the outer surface where the stress is greatest.The initial crack starts where the stress exceeds the strength of the grain on which it acts.This is usually where there is a small surface defect,such a
44、s a material flaw or a tiny scratch.As the number of cycles increases,the initial crack begins to propagate into a continuous series of cracks all around the periphery of the shaft.The conception o</p><p>
45、This brings out an interesting fact.When actual machine parts fail as a result of static loads,they normally deform appreciably because of the ductility of the material.</p><p> Thus many static failures ca
46、n be avoided by making frequent visual observations and replacing all deformed parts.However,fatigue failures give to warning.Fatigue fail mated that over 90% of broken automobile parts have failed through fatigue.</p
47、><p> The fatigue strength of a material is its ability to resist the propagation of cracks under stress reversals.Endurance limit is a parameter used to measure the fatigue strength of a material.By definitio
48、n,the endurance limit is the stress value below which an infinite number of cycles will not cause failure.</p><p> Let us return our attention to the fatigue testing machine in Figure 2.9.The test is run as
49、 follows:A small weight is inserted and the motor is turned on.At failure of the test specimen,the counter registers the number of cycles N,and the corresponding maximum bending stress is calculated from Equation 2.5.The
50、 broken specimen is then replaced by an identical one,and an additional weight is inserted to increase the load.A new value of stress is calculated,and the procedure is repeated until failu</p><p> The rela
51、tionship depicted in Figure 2.14 is typical for steel,because the curve becomes horizontal as N approaches a very large number.Thus the endurance limit equals the stress level where the curve approaches a horizontal tang
52、ent.Owing to the large number of cycles involved,N is usually plotted on a logarithmic scale,as shown in Figure 2.14b.When this is done,the endurance limit value can be readily detected by the horizontal straight line.Fo
53、r steel,the endurance limit equals approximately 50%</p><p> The most common type of fatigue is that due to bending.The next most frequent is torsion failure,whereas fatigue due to axial loads occurs very s
54、eldom.Spring materials are usually tested by applying variable shear stresses that alternate from zero to a maximum value,simulating the actual stress patterns.</p><p> In the case of some nonferrous metals
55、,the fatigue curve does not level off as the number of cycles becomes very large.This continuing toward zero stress means that a large number of stress reversals will cause failure regardless of how small the value of st
56、ress is.Such a material is said to have no endurance limit.For most nonferrous metals having an endurance limit,the value is about 25% of the ultimate strength.</p><p> EFFECTS OF TEMPERATURE ON YIELD STREN
57、GTH AND MODULUS OF ELASTICITY</p><p> Generally speaking,when stating that a material possesses specified values of properties such as modulus of elasticity and yield strength,it is implied that these value
58、s exist at room temperature.At low or elevated temperatures,the properties of materials may be drastically different.For example,many metals are more brittle at low temperatures.In addition,the modulus of elasticity and
59、yield strength deteriorate as the temperature increases.Figure 2.23 shows that the yield strength for mild steel</p><p> Figure 2.24 shows the reduction in the modulus of elasticity E for mild steel as the
60、temperature increases.As can be seen from the graph,a 30% reduction in modulus of elasticity occurs in going from room temperature to 1000oF.In this figure,we also can see that a part loaded below the proportional limit
61、at room temperature can be permanently deformed under the same load at elevated temperatures.</p><p> CREEP: A PLASTIC PHENOMENON</p><p> Temperature effects bring us to a phenomenon called cr
62、eep,which is the increasing plastic deformation of a part under constant load as a function of time.Creep also occurs at room temperature,but the process is so slow that it rarely becomes significant during the expected
63、life of the temperature is raised to 300oC or more,the increasing plastic deformation can become significant within a relatively short period of time.The creep strength of a material is its ability to resist creep,and cr
64、eep st</p><p> Since creep is a plastic deformation phenomenon,the dimensions of a part experiencing creep are permanently altered.Thus,if a part operates with tight clearances,the design engineer must accu
65、rately predict the amount of creep that will occur during the life of the machine.Otherwise,problems such binding or interference can occur. </p><p> Creep also can be a problem in the case where bolts are
66、used to clamp tow parts together at elevated temperatures.The bolts,under tension,will creep as a function of time.Since the deformation is plastic,loss of clamping force will result in an undesirable loosening of the bo
67、lted joint.The extent of this particular phenomenon,called relaxation,can be determined by running appropriate creep strength tests.</p><p> Figure 2.25 shows typical creep curves for three samples of a mil
68、d steel part under a constant tensile load.Notice that for the high-temperature case the creep tends to accelerate until the part fails.The time line in the graph (the x-axis) may represent a period of 10 years,the antic
69、ipated life of the product.</p><p><b> SUMMARY</b></p><p> The machine designer must understand the purpose of the static tensile strength test.This test determines a number of mec
70、hanical properties of metals that are used in design equations.Such terms as modulus of elasticity,proportional limit,yield strength,ultimate strength,resilience,and ductility define properties that can be determined fro
71、m the tensile test.</p><p> Dynamic loads are those which vary in magnitude and direction and may require an investigation of the machine part’s resistance to failure.Stress reversals may require that the a
72、llowable design stress be based on the endurance limit of the material rather than on the yield strength or ultimate strength.</p><p> Stress concentration occurs at locations where a machine part changes s
73、ize,such as a hole in a flat plate or a sudden change in width of a flat plate or a groove or fillet on a circular shaft.Note that for the case of a hole in a flat or bar,the value of the maximum stress becomes much larg
74、er in relation to the average stress as the size of the hole decreases.Methods of reducing the effect of stress concentration usually involve making the shape change more gradual.</p><p> Machine parts are
75、designed to operate at some allowable stress below the yield strength or ultimate strength.This approach is used to take care of such unknown factors as material property variations and residual stresses produced during
76、manufacture and the fact that the equations used may be approximate rather that exact.The factor of safety is applied to the yield strength or the ultimate strength to determine the allowable stress.</p><p>
77、 Temperature can affect the mechanical properties of metals.Increases in temperature may cause a metal to expand and creep and may reduce its yield strength and its modulus of elasticity.If most metals are not allowed t
78、o expand or contract with a change in temperature,then stresses are set up that may be added to the stresses from the load.This phenomenon is useful in assembling parts by means of interference fits.A hub or ring has an
79、inside diameter slightly smaller than the mating shaft or post</p><p> 故障的分析、尺寸的決定以及凸輪的分析和應用</p><p> 摘要:作為一名設(shè)計工程師有必要知道零件如何發(fā)生和為什么會發(fā)生故障,以便通過進行最低限度的維修以保證機器的可靠性;凸輪是被應用的最廣泛的機械結(jié)構(gòu)之一,是一種僅僅有兩個組件構(gòu)成的設(shè)備。主
80、動件本身就是凸輪,而輸出件被稱為從動件。通過使用凸輪,一個簡單的輸入動作可以被修改成幾乎可以想像得到的任何輸出運動。</p><p> 關(guān)鍵詞:故障 高速凸輪 設(shè)計屬性</p><p><b> 前言介紹:</b></p><p> 作為一名設(shè)計工程師有必要知道零件如何發(fā)生和為什么會發(fā)生故障,以便通過進行最低限度的維修以保證機器的可靠性。
81、有時一次零件的故障或者失效可能是很嚴重的一件事情,比如,當一輛汽車正在高速行駛的時候,突然汽車的輪胎發(fā)生爆炸等。另一方面,一個零件發(fā)生故障也可能只是一件微不足道的小事,只是給你造成了一點小麻煩。一個例子是在一個汽車冷卻系統(tǒng)里的暖氣裝置軟管的松動。后者發(fā)生的這次故障造成的結(jié)果通常只不過是一些暖氣裝置里冷卻劑的損失,是一種很容易被發(fā)現(xiàn)并且被改正的情況。</p><p> 能夠被零件進行吸收的載荷是相當重要的。一般說
82、來,與靜載重相比較,有兩個相反方向的動載荷將會引起更大的問題,因此,疲勞強度必須被考慮。另一個關(guān)鍵是材料是可延展性的還是脆性的。例如,脆的材料被認為在存在疲勞的地方是不能夠被使用的。</p><p> 很多人錯誤的把一個零件發(fā)生故障或者失效理解成這樣就意味著一個零件遭到了實際的物理破損。無論如何,一名設(shè)計工程師必須從一個更廣泛的范圍來考慮和理解變形是究竟如何發(fā)生的。一種具有延展性的材料,在破裂之前必將發(fā)生很大程
83、度的變形。發(fā)生了過度的變形,但并沒有產(chǎn)生裂縫,也可能會引起一臺機器出毛病,因為發(fā)生畸變的零件會干擾下一個零件的移動。因此,每當它不能夠再履行它要求達到的性能的時候,一個零件就都算是被毀壞了(即使它的表面沒有被損毀)。有時故障可能是由于兩個兩個相互搭配的零件之間的不正常的磨擦或者異常的振動引起的。</p><p> 故障也可能是由一種叫蠕變的現(xiàn)象引起的,這種現(xiàn)象是指金屬在高溫下時一種材料的塑性流動。此外,一個零件
84、的實際形狀可能會引起故障的發(fā)生。例如,應力的集中可能就是由于輪廓的突然變化引起的,這一點也需要被考慮到。當有用兩個相反方向的動載荷,材料不具有很好的可延展性時,對應力考慮的評估就特別重要。 </p><p> 一般說來,設(shè)計工程師必須考慮故障可能發(fā)生的全部方式,包括如下一些方面:</p><p><b> ——壓力</b></p><p>
85、<b> ——變形</b></p><p><b> ——磨損</b></p><p><b> ——腐蝕</b></p><p><b> ——振動</b></p><p><b> ——環(huán)境破壞</b></p>
86、;<p><b> ——固定設(shè)備松動</b></p><p> 在選擇零件的大小與形狀的時候,也必須考慮到一些可能會產(chǎn)生外部負載影響的空間因素,例如幾何學間斷性,為了達到要求的外形輪廓及使用相關(guān)的連接件,也會產(chǎn)生相應的殘余應力。</p><p> 凸輪是被應用的最廣泛的機械結(jié)構(gòu)之一,是一種僅僅有兩個組件構(gòu)成的設(shè)備。主動件本身就是凸輪,而輸出件被稱為
87、從動件。通過使用凸輪,一個簡單的輸入動作可以被修改成幾乎可以想象得到的任何輸出運動。常見的一些關(guān)于凸輪應用的例子有:</p><p> ——凸輪軸和汽車發(fā)動機工程的裝配</p><p><b> ——專用機床</b></p><p><b> ——自動電唱機</b></p><p><b
88、> ——印刷機</b></p><p><b> ——自動的洗衣機</b></p><p><b> ——自動的洗碗機</b></p><p> 高速凸輪(凸輪超過1000 rpm的速度)的輪廓必須從數(shù)學意義上來定義。無論如何,大多數(shù)凸輪以低速(少于500 rpm)運行而中速的凸輪可以通過一個大比
89、例的圖形表示出來。一般說來,凸輪的速度和輸出負載越大,凸輪的輪廓在被床上被加工時就一定要更加精密。</p><p><b> 材料的設(shè)計屬性</b></p><p> 當他們與抗拉的試驗有關(guān)時,材料的下列設(shè)計特性被定義如下。</p><p> 靜強度:一個零件的強度是指零件在不會失去它被要求的能力的前提下能夠承受的最大應力。因此靜強度可以
90、被認為是大約等于比例極限,從理論上來說,我們可以認為在這種情況下,材料沒有發(fā)生塑性變形和物理破壞。</p><p> 剛度:剛度是指材料抵抗變形的一種屬性。這條斜的模數(shù)線以及彈性模數(shù)是一種衡量材料的剛度的一種方法。</p><p> 彈性:彈性是指零件能夠吸收能量但并沒有發(fā)生永久變形的一種材料的屬性。吸收的能量的多少可以通過下面彈性區(qū)域內(nèi)的應力圖表來描述出來。</p>&
91、lt;p> 韌性:韌性和彈性是兩種相似的特性。無論如何,韌性是一種可以吸收能量并且不會發(fā)生破裂的能力。因此可以通過應力圖里面的總面積來描述韌性,就像用圖2.8 b 描繪的那樣。顯而易見,脆性材料的韌性和彈性非常低,并且大約相等。</p><p> 脆性:一種脆性的材料就是指在任何可以被看出來的塑性變形之前就發(fā)生破裂的材料。脆性的材料一般被認為不適合用來做機床的零部件,因為當遇到由軸肩,孔,槽,或者鍵槽等
92、幾何應力集中源引起的高的應力時,脆性材料是無法來產(chǎn)生局部屈服的現(xiàn)象以適應高的應力環(huán)境的。</p><p> 延展性:一種延展性材料會在破裂之前表現(xiàn)出很大程度上的塑性變形現(xiàn)象。延展性是通過可延展的零件在發(fā)生破裂前后的面積和長度的百分比來測量的。一個在發(fā)生破裂的零件,其伸長量如果為5%,則認為該伸長量就是可延展性和脆性材料分界線。</p><p> 可鍛性:從根本上來說是指材料的一種在承受
93、擠壓或壓縮是可以發(fā)生塑性變形的能力,同時,它也是一種在金屬被滾壓成鋼板時所需金屬的重要性能。</p><p> 硬度:一種材料的硬度是指它抵抗擠壓或者拉伸它的能力。一般說來,材料越硬,它的脆性也越大,因此,彈性越小。同樣,一種材料的極限強度粗略與它的硬度成正比。</p><p> 機械加工性能(或切削性):機械加工性能是指材料的一種容易被加工的性能。通常,材料越硬,越難以加工。<
94、/p><p> 壓應力和剪應力:除抗拉的試驗之外,還有其它一些可以提供有用信息的靜載荷的實驗類型。</p><p> 壓縮測試:大多數(shù)可延展材料大約有相同特性,當它們處于受壓狀態(tài)的緊張狀態(tài)時。極限強度,無論如何,不能夠被用于評價壓力狀態(tài)。當一件具有可延展性的樣品受壓發(fā)生塑性變形時,材料的其它部分會凸出來,但是在這種緊張的狀態(tài)下,材料通常不會發(fā)生物理上的破裂。因此,一種可延展的材料通常是由于
95、變形受壓而損壞的,并不是壓力的原因。 </p><p> 剪應力測試:軸,螺釘,鉚釘和焊接件被用這樣一種方式定位以致于生產(chǎn)了剪應力。一張抗拉試驗的試驗圖紙就可以說明問題。當壓力大到可以使材料發(fā)生永久變形或發(fā)生破壞時,這時的壓力就被定義為極限剪切強度。極限剪切強度,無論如何,不等于處于緊張狀態(tài)的極限強度。例如,以鋼的材料為例,最后的剪切強度是處于緊張狀態(tài)大約極限強度的75%。當在機器零部件里遇到剪應力時,這個差別
96、就一定要考慮到了。</p><p> 動力載荷:不會在各種不同的形式的力之間不停發(fā)生變化的作用力被叫作靜載荷或者穩(wěn)定載荷。此外,我們通常也把很少發(fā)生變化的作用力叫作靜載荷。在拉伸實驗中,被分次、逐漸的加載的作用力也被叫作靜載荷。</p><p> 另一方面,在大小和方向上經(jīng)常發(fā)生變化的力則被稱為動載荷。動載荷可以被再細分為以下的3種類型。</p><p> 變
97、載荷:所謂變載荷,就是說載荷的大小在變,但是方向不變的載荷。比如說,變載荷會產(chǎn)生忽大忽小的張應力,但不會產(chǎn)生壓應力。</p><p> 周期性載荷:像這樣的話,如果大小和方向同時改變,則就是說這種載荷會反復周期性的產(chǎn)生變化的拉應力和壓應力,這種現(xiàn)象往往就伴隨著應力在方向和大小上的周期性變化。</p><p> 沖擊載荷:這類載荷是由于沖擊作用產(chǎn)生的。一個例子就是一臺升降機墜落到位于通道
98、底部的一套彈簧裝置上,這套裝置產(chǎn)生的力會比升降機本身的重量大上好幾倍。當汽車的一個輪胎碰撞到道路上的一個突起或者路上的一個洞時,相同的沖擊荷載的類型也會在汽車的減震器彈簧上發(fā)生。</p><p> 疲勞失效-疲勞極限線圖</p><p> 如果材料的某處經(jīng)常會產(chǎn)生大量的周期性作用力,那么在材料的表面就很可能會出現(xiàn)裂縫。裂縫最初是在應力超過它極限壓力的地方開始出現(xiàn)的,而通常這往往是有微小
99、的表面缺陷的地方,例如有一處材料出現(xiàn)瑕疵或者一道極小的劃痕。當循環(huán)的次數(shù)增加時,最初的裂縫開始在軸的周圍的逐漸產(chǎn)生許多類似的裂縫。所以說,第一道裂縫的意義就是指應力集中的地方,它會加速其它裂縫的產(chǎn)生。一旦整個的外圍斗出現(xiàn)了裂縫,裂縫就會開始向軸的中心轉(zhuǎn)移。最后,當剩下的固體的內(nèi)部地區(qū)變得足夠小,且當壓力超過極限強度時,軸就會突然發(fā)生斷裂。對斷面的檢查可以發(fā)現(xiàn)一種非常有趣的圖案,如圖2.13中所示。外部的一個環(huán)形部分相對光滑一些,因為原來
100、表面上相互交錯的裂縫之間不斷地發(fā)生磨擦導致了這種現(xiàn)象的產(chǎn)生。無論如何,中心部分是粗糙的,表明中心是突然發(fā)生了斷裂,類似于脆性材料斷裂時的現(xiàn)象。</p><p> 這就表明了一個有趣的事實。當正在使用的機器零件由于靜載荷的原因出現(xiàn)問題時,由于材料具有的延展性,他們通常會發(fā)生一定程度的變形。</p><p> 盡管許多地由于靜壓力導致的零件故障可以通過頻繁的做實際的觀察并且替換全部發(fā)生變形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--故障的分析尺寸的決定以及凸輪的分析和應用
- 外文翻譯---故障的分析、尺寸的決定以及凸輪的分析應用
- 外文翻譯--故障的分析尺寸的決定以及凸輪的分析和應用.doc
- 機械外文翻譯---故障的分析、尺寸的決定以及凸輪的分析和應用
- 外文翻譯--故障的分析尺寸的決定以及凸輪的分析和應用.doc
- 機械專業(yè)外文翻譯--故障的分析、尺寸的決定以及凸輪的分析和應用
- 故障的分析、尺寸的決定以及凸輪的分析和應用-畢業(yè)設(shè)計外文翻譯
- 機械專業(yè)外文翻譯--故障的分析尺寸的決定以及凸輪的分析和應用.doc
- 機械專業(yè)外文翻譯--故障的分析尺寸的決定以及凸輪的分析和應用.doc
- 機械畢業(yè)設(shè)計外文翻譯--故障的分析、尺寸的決定以及凸輪的分析和應用
- 外文翻譯=故障的分析、尺寸的決定以及凸輪的分析和應用=8000字符.zip
- 故障的分析、尺寸的決定以及凸輪的分析和應用英文翻譯.doc
- 外文翻譯=故障的分析、尺寸的決定以及凸輪的分析和應用=8000字符.zip
- 故障的分析、尺寸的決定以及凸輪的分析和應用英文翻譯.doc
- 機械專業(yè)畢業(yè)設(shè)計-外文翻譯--故障的分析、尺寸的決定以及凸輪的分析和應用
- 故障的分析、尺寸的決定以及凸輪的分析和應用外文文獻翻譯@中英文翻譯@外文翻譯
- 故障的分析、尺寸的決定以及凸輪的分析和應用--中英文翻譯
- 故障的分析、尺寸的決定以及凸輪的分析和應用--中英文翻譯.doc
- 畢業(yè)設(shè)計機械論文翻譯--故障的分析、尺寸的決定以及凸輪的分析和應用
- fdi的決定因素—實證分析【外文翻譯】
評論
0/150
提交評論