2023年全國(guó)碩士研究生考試考研英語(yǔ)一試題真題(含答案詳解+作文范文)_第1頁(yè)
已閱讀1頁(yè),還剩30頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p><b>  中文譯文</b></p><p>  混合動(dòng)力驅(qū)動(dòng)車(chē)輛安裝高空作業(yè)平臺(tái)的控制策略</p><p>  Janusz Krasucki a, Andrzej Rostkowski a, Lukasz Gozdek b, Micha? Barty? b,</p><p>  a Construction Equipme

2、nt Research Institute, Napoleona 2, 05-230 Kobyka, Poland</p><p>  b Warsaw University of Technology, Institute of Automatic Control and Robotics, Boboli 8, 02-525 Warsaw, Poland</p>

3、<p><b>  摘要</b></p><p>  本文提出的發(fā)展過(guò)程即假設(shè),建造,模擬和分析混合動(dòng)力驅(qū)動(dòng)車(chē)輛安裝高空作業(yè)平臺(tái)的控制策略。特別注意的是支付控制系統(tǒng)策略的發(fā)展,確保適當(dāng)?shù)哪茉丛偕?,通過(guò)電化學(xué)形式儲(chǔ)存能量??刂撇呗允菄@上下分層控制系統(tǒng)的概念建立起來(lái)的。高空作業(yè)平臺(tái)的高程控制被假定為控制系統(tǒng)的主要目標(biāo)??刂葡到y(tǒng)的第二個(gè)目標(biāo)是制定明確的跟蹤和保持在預(yù)定義的范圍內(nèi)的可再

4、充電的電化學(xué)蓄電池的充電水平。在Matlab-Simulink環(huán)境下開(kāi)發(fā)控制系統(tǒng)的仿真模型。控制系統(tǒng)仿真的示范性成果被一個(gè)液壓動(dòng)力結(jié)構(gòu)驅(qū)動(dòng)安裝在特殊車(chē)輛MONTRAKS上的高空作業(yè)平臺(tái)例子所顯示。</p><p>  關(guān)鍵字:控制策略,混合動(dòng)力驅(qū)動(dòng),能量恢復(fù),環(huán)境的保護(hù),模糊邏輯</p><p>  從這篇文章中的圖和表:</p><p>  如圖1所示.MONTR

5、AKS 3PS的專(zhuān)用車(chē) </p><p>  1.介紹 減少車(chē)輛的廢氣排放一直是多年的研究目標(biāo),部分是迫于日益嚴(yán)格的環(huán)保立法。在1997年12月的第三屆締約方會(huì)議通過(guò)的“京都議定書(shū)”,旨在減少相比于1990年的溫室氣體排放量(GHG)平均水平的5%。2005年2月16日由俄羅斯批準(zhǔn)后生效。 作為一個(gè)用于減少溫室氣體排放,提高燃油經(jīng)濟(jì)性和能源效率的裝置,混合動(dòng)力系統(tǒng)正在受到關(guān)注。 混合驅(qū)動(dòng)汽

6、車(chē)市場(chǎng)動(dòng)態(tài)的增長(zhǎng)已經(jīng)多年?,F(xiàn)代,有11個(gè)大型汽車(chē)制造商用于交付或深入發(fā)展混合動(dòng)力驅(qū)動(dòng)型的車(chē)輛。即使這些車(chē)商主要是專(zhuān)供乘用車(chē)部分,應(yīng)當(dāng)強(qiáng)調(diào)的是他們進(jìn)行了顯著的努力,從而實(shí)現(xiàn)了混合動(dòng)力驅(qū)動(dòng)卡車(chē),送貨車(chē)和公交車(chē)[1,2]。 West Start-CALSTART[3],一個(gè)先進(jìn)的運(yùn)輸技術(shù)財(cái)團(tuán),在美國(guó)陸軍國(guó)家汽車(chē)中心(NAC)的支持下,組織一部分混合動(dòng)力卡車(chē)用戶(hù)論壇(HTUF?)計(jì)劃試點(diǎn)項(xiàng)目,以加快和協(xié)助混合商業(yè)化。根據(jù)制定的CAL-S

7、TART的預(yù)測(cè),混合驅(qū)動(dòng)車(chē)的市場(chǎng)份額在2010年將達(dá)到約9%的增長(zhǎng),2020年將達(dá)到近18.5%的增長(zhǎng)。 還有重型機(jī)器和特殊用途車(chē)輛,都是實(shí)現(xiàn)混合動(dòng)力驅(qū)動(dòng)的解決方案可能出現(xiàn)的對(duì)象。但</p><p>  以下分析功率控制系統(tǒng)的優(yōu)化:功率效率因素,燃油消耗和排放量已給出[3,9,10]。調(diào)查主要集中在車(chē)輛制動(dòng)階段的動(dòng)能再生。 在本文中,設(shè)計(jì)一個(gè)動(dòng)力管理控制系統(tǒng),被描述成是一個(gè)配有液壓高空作業(yè)平臺(tái)(A

8、WP)設(shè)備的專(zhuān)用汽車(chē)的驅(qū)動(dòng)系統(tǒng)。AWP對(duì)該類(lèi)型的車(chē)輛(被迫停止的占空比)處理應(yīng)認(rèn)真考慮負(fù)載勢(shì)能的可回收性[11,12]。 混合驅(qū)動(dòng)相比其他被提議的解決方案的主要優(yōu)點(diǎn)是它是一個(gè)簡(jiǎn)單的驅(qū)動(dòng)架構(gòu)。它不同于已知的解決方案,那些廣泛適用于私家車(chē)。經(jīng)典方法(私家車(chē))是需要完全重新設(shè)計(jì)動(dòng)力傳動(dòng)系統(tǒng)。創(chuàng)新的方法對(duì)于特殊用途的車(chē)輛,只需要擴(kuò)展經(jīng)典的ICE驅(qū)動(dòng)和擴(kuò)展單元。擴(kuò)展單元組成的電動(dòng)機(jī)加上液壓泵/馬達(dá)。該解決方案允許區(qū)分熱和電的功率流路徑借助

9、于液壓子系統(tǒng)。然而,即使該解決方案不是簡(jiǎn)單的從功率流的角度出發(fā),它任需求先進(jìn)的控制系統(tǒng)策略。</p><p>  兩層分層控制系統(tǒng)結(jié)構(gòu)在本文中被提到。較低的控制水平是被本地經(jīng)典的比例 - 積分 - 微分(PID)控制器所應(yīng)用建造的。一個(gè)更高的控制水平是周?chē)纬闪艘粋€(gè)模糊邏輯控制器(FLC),目的是對(duì)低水平本地控制器動(dòng)態(tài)設(shè)置控制規(guī)則。</p><p>  2.目標(biāo)系統(tǒng)的特點(diǎn):</p&g

10、t;<p>  一個(gè)專(zhuān)業(yè)的汽車(chē)MONTRAKS的(圖1)打算利用市政通信服務(wù)維修和保養(yǎng)電車(chē)、有軌電車(chē)架空導(dǎo)線(xiàn)的系統(tǒng),以及組裝和拆卸的軌道部。</p><p>  圖2結(jié)構(gòu)的混合動(dòng)力驅(qū)動(dòng)單元理念:X - 活塞桿的位移,V - 活塞桿速度,p1- 活塞式壓力,R 1 - 閥(8)的開(kāi)關(guān)信號(hào),p2的 - 供應(yīng)壓力,R2 - 切換閥(7)的信號(hào)- EM轉(zhuǎn)速,U - 電池電壓,I - 電池電流,n2 - IC

11、E轉(zhuǎn)速</p><p>  通常,這種類(lèi)型的車(chē)輛在設(shè)計(jì)的基礎(chǔ)上,為定期卡車(chē)的底盤(pán)配備了相應(yīng)的工作配件。該設(shè)備是建立在架空工作嵌入式平臺(tái)(AWP)(1)驅(qū)動(dòng)的動(dòng)臂(2)的端部的兩個(gè)液壓缸和液壓回轉(zhuǎn)馬達(dá)(3)的集合。除了標(biāo)準(zhǔn)的道路上運(yùn)行的輪胎,這些車(chē)輛的主要特征是可能在軌道上繼續(xù)運(yùn)行。具有低速液壓馬達(dá)驅(qū)動(dòng)的額外的(4)軌道輪組實(shí)現(xiàn)了這一目標(biāo)。 常常,牽引網(wǎng)絡(luò)的維護(hù)和修理要耗時(shí)整晚,大都消耗在操作上。對(duì)于在維

12、修工作的時(shí)間期間進(jìn)行的,該車(chē)輛被停放;代替發(fā)動(dòng)機(jī)連續(xù)不斷地運(yùn)行,并且驅(qū)動(dòng)液壓泵供應(yīng)油給液壓設(shè)備。在這個(gè)執(zhí)行階段周期,工作設(shè)備的功率需求很低 - 值不超過(guò)3%,由于柴油發(fā)動(dòng)機(jī)的額定功率[2] 接近它的低效率和重大排放量操作點(diǎn)的區(qū)域。同時(shí),柴油機(jī)還產(chǎn)生特別惱人的噪音。</p><p>  上述缺點(diǎn)可以消除,例如通過(guò)引入額外的由一個(gè)電化學(xué)電池組成的電動(dòng)機(jī)(EM)。在這種情況下,ICE將提供機(jī)械動(dòng)力當(dāng)車(chē)輛偏移操作區(qū)域時(shí)。

13、停車(chē)時(shí)車(chē)輛的動(dòng)力向EM以及可選的ICE工作設(shè)備索取,從而保持車(chē)輛平衡。</p><p>  討論的混合動(dòng)力驅(qū)動(dòng)系統(tǒng)的結(jié)構(gòu)示意圖 2。</p><p>  用于電機(jī)的能源供給的是一組電化學(xué)蓄能器(5)。驅(qū)動(dòng)設(shè)備單元的主要?jiǎng)恿υ词荅M。電動(dòng)機(jī)牽引參數(shù)由脈沖寬度調(diào)制器(6)控制。它可能扭轉(zhuǎn)電動(dòng)機(jī)運(yùn)行到發(fā)電機(jī)模式。EM運(yùn)行的液壓泵(3)供應(yīng)液壓傳動(dòng)系統(tǒng)。 ICE,選擇適當(dāng)?shù)墓ぷ鼽c(diǎn)進(jìn)行試轉(zhuǎn),成為第二

14、液壓泵(2)。液壓油流量(2)和(3)在公共電源線(xiàn)上被添加在一起。液壓切換閥(7)和(8)重定向油流量在干線(xiàn)電源上通過(guò),要么儲(chǔ)罐溢流到油箱閥或液壓缸下活塞的腔室(9)?;钊祝?)控制仰角臂(10)和間接高空作業(yè)平臺(tái)部(11)的位置。很明顯,氣缸(9)控制負(fù)載的勢(shì)能Q從而影響平臺(tái)的提升或降低。</p><p>  圖3 結(jié)構(gòu)的控制系統(tǒng),概念:sp xp -定位點(diǎn)的位置。光伏xp -實(shí)際值的位置;e xp -用位置

15、控制誤差;sp vp -定位點(diǎn)取消或降低速度的實(shí)際工作壓力;光伏vp -實(shí)際價(jià)值,用速度;sp SOC -定位點(diǎn)的電池SOC;太陽(yáng)能光伏電池SOC -實(shí)際價(jià)值的電池SOC;pv p1 -實(shí)際價(jià)值的壓力p1;光伏p2 -實(shí)際價(jià)值的壓力p2;OUT2 - PID控制器的輸出。</p><p>  圖4 用隸屬函數(shù)的位置控制誤差</p><p>  以下幾個(gè)階段是加以區(qū)別的占空比混合動(dòng)力驅(qū)動(dòng)單

16、元:?SPL階段 - 提升的AWP,?SPD階段 - 較低的AWP,?SPP階段 - 停車(chē)的AWP。</p><p>  在SPL階段,由于氣缸(9)的活塞式運(yùn)轉(zhuǎn)以及適當(dāng)?shù)牡鯒U上升運(yùn)轉(zhuǎn),油流的添加或分化從泵(2)和(3)發(fā)生。萬(wàn)一流動(dòng)減少,一個(gè)泵流量的一部分會(huì)被引導(dǎo)到主電源線(xiàn),所述提供一部分驅(qū)動(dòng)流量的泵(3)切換到電動(dòng)機(jī)模式。在SPD階段,油的流動(dòng)方向在主油壓供給線(xiàn)上發(fā)生變化,油運(yùn)行泵(3)和機(jī)械耦合的電動(dòng)

17、馬達(dá)(4)。在這兩個(gè)階段中它可能供給汽缸(9)通過(guò)油供給泵(3)由電動(dòng)馬達(dá)(4)驅(qū)動(dòng)。電池充電(5)發(fā)生在SPP階段。在此階段中, AWP是被固定的,泵(3)是由石油供給給泵(2)所驅(qū)動(dòng)的。</p><p><b>  3.控制策略</b></p><p>  在一般情況下,功率控制策略的主要目標(biāo)是操作混合動(dòng)力驅(qū)動(dòng)時(shí)盡可能達(dá)到高的能源效率和低的排放量,同時(shí)保持指定車(chē)的

18、輛性能[13]。控制系統(tǒng)的主要任務(wù)是最大限度地利用電力的混合動(dòng)力驅(qū)動(dòng)。MONTRAKS車(chē)輛的噪聲水平和經(jīng)濟(jì)運(yùn)行符合相對(duì)應(yīng)的具體要求。</p><p>  這可以通過(guò)應(yīng)用被建議的功率控制戰(zhàn)略來(lái)實(shí)現(xiàn)。這一戰(zhàn)略是基于通過(guò)控制一組電池的電荷(SOC)的狀態(tài)從而操作AWP使其速度接近于所需的軌跡以及捕獲有效的再生能量。因?yàn)樗俏ㄒ豢赡艿?,SPL和SPD占空比的階段,應(yīng)使用電力驅(qū)動(dòng)。</p><p>

19、  SOC是目前電池充電時(shí)瞬間可能存儲(chǔ)在電池中最大比例的電荷。</p><p>  t = T時(shí),可表示為:</p><p><b>  ;</b></p><p>  其中:Q(t0)= Q max的最大容量的電池中,SOC(t0)= 1,i(t)的電池充電或充電電流。</p><p>  同時(shí),一個(gè)電池組的SOC

20、應(yīng)控制在最小的SOC和最大的SOC之間,從而有效的得到能源的再生制動(dòng),使能量最少的丟失和對(duì)電池組的壓力最小。最低和最高的SOC的標(biāo)準(zhǔn)是根據(jù)電池吸收再生能量的能力,并重新啟動(dòng)交通工具系統(tǒng)所確定的。在一般情況下,最小的SOC標(biāo)準(zhǔn)和最大SOC標(biāo)準(zhǔn)之間的差異,在于電池更多的可再生能源能有效地吸收。然而,對(duì)于在SOC標(biāo)準(zhǔn)內(nèi)大跨度地操作可能會(huì)降低電池的使用壽命,同時(shí)受放電深度的影響。因此,SOC水平應(yīng)適當(dāng)?shù)卮_定在最佳的最小和最大之間的水平[SOC

21、min, SOC max].??紤]到電池的充電和放電效率,本文的SOC范圍被設(shè)置為[0.3,0.8]。</p><p>  發(fā)動(dòng)機(jī)和電動(dòng)機(jī)之間的流量分布可以通過(guò)驅(qū)動(dòng)反應(yīng)的程度(DOH)來(lái)確定:</p><p>  其中:PICE - 發(fā)動(dòng)機(jī)的功率,PMOT - 電機(jī)功率。</p><p>  合并后的電源管理/設(shè)計(jì)優(yōu)化問(wèn)題可寫(xiě)為如下:</p><

22、p>  在 SPL 和SPD 階段出現(xiàn)最大值DOH</p><p>  其中:XSP(T)所需的AWP軌跡XPV(t)實(shí)際的AWP軌跡。</p><p>  為這個(gè)目的所設(shè)計(jì)出的控制系統(tǒng)的結(jié)構(gòu)在圖3。 圖3示出的控制系統(tǒng)的結(jié)構(gòu)。該控制系統(tǒng)由兩個(gè)循環(huán):</p><p>  - AWP的位置和速度的控制,- 控制電池組的SOC。</p>

23、<p>  每個(gè)回路可以控制電動(dòng)機(jī)控制器??刂菩盘?hào)是受邏輯單元管理。它的目標(biāo)是適當(dāng)?shù)臅r(shí)刻供應(yīng)平穩(wěn)切換的控制信號(hào)。AWP控制系統(tǒng)用一個(gè)級(jí)聯(lián)結(jié)構(gòu)來(lái)定位和控制速度。模糊控制器處理AWP的速度。其是從實(shí)際的和需求的平臺(tái)位移來(lái)計(jì)算的。輔助控制器SP_vp的速度信號(hào),被美聯(lián)儲(chǔ)以經(jīng)典的PID控制器作為參考,把它與實(shí)際速度的平臺(tái)PV_sp相比。第二控制回路電池的SOC保持在預(yù)定義的限制范圍。這個(gè)循環(huán)是由PID控制器和邏輯單元組成的。 PID

24、單元通過(guò)連續(xù)調(diào)節(jié)的液壓閥位置控制管理電池的充電水平。</p><p>  3.1 AWP位置控制器</p><p>  AWP控制器的開(kāi)發(fā)是基于已經(jīng)開(kāi)發(fā)的經(jīng)典的級(jí)聯(lián)控制器PID和控制器FLC。 FLC已經(jīng)被選中,因?yàn)槠溥m合控制的非線(xiàn)性,多領(lǐng)域的控制,并隨時(shí)間變化有多種不確定因素[3]的工廠。該控制器有兩個(gè)輸入:一個(gè)AWP(SP_xp-PV_xp)控制位置誤差,和一個(gè)AWP(PV_vp)測(cè)

25、當(dāng)前速度。 FLC為PID控制器的電動(dòng)馬達(dá)計(jì)算AWP的速度SP_vp的定位值。</p><p>  FLC[14]由三個(gè)基本的??的塊組成:模糊化,推斷和非模糊化。控制器的輸入是在模糊塊被統(tǒng)一標(biāo)準(zhǔn)模糊化。事實(shí)上,模糊化把清晰的空間映射到模糊的空間。在這個(gè)過(guò)程中,對(duì)于適當(dāng)?shù)哪:担:?,把每個(gè)鮮明的輸入信號(hào)的每個(gè)樣品被轉(zhuǎn)變?yōu)橐唤M數(shù)字信號(hào)理解為這個(gè)樣本的隸屬度。 同一的模糊化標(biāo)準(zhǔn)輸入被供應(yīng)到一個(gè)推理機(jī)。 推理機(jī)是

26、在模糊輸入,模糊邏輯規(guī)則和知識(shí)嵌入在規(guī)則庫(kù)中(圖6)進(jìn)行模糊輸出。該規(guī)則是根據(jù)相應(yīng)的知識(shí)或通過(guò)依靠資料學(xué)習(xí)或從真實(shí)的后天獲得或模擬實(shí)驗(yàn)建立起來(lái)的。模糊輸出從推理機(jī)被轉(zhuǎn)化成鮮明值通過(guò)依靠非模糊化程序。模糊化的過(guò)程中,專(zhuān)門(mén)三角形和梯形隸屬函數(shù)已被使用。每個(gè)模糊AWP速度控制器的輸入,都是依靠同一模糊化標(biāo)準(zhǔn)的7個(gè)隸屬函數(shù)的裝置來(lái)實(shí)現(xiàn)的(參見(jiàn)圖4和5)。</p><p>  推理過(guò)程中應(yīng)用的規(guī)則庫(kù)描繪在圖 6。規(guī)則庫(kù)被設(shè)

27、定定量的知識(shí)集??偣灿?9個(gè)規(guī)則已經(jīng)被FLC論證。對(duì)于清晰度,規(guī)則庫(kù)以彩色矩陣的形式顯示。每個(gè)條目的矩陣對(duì)應(yīng)于適當(dāng)?shù)哪:妮敵觯⊿P_vp);呈現(xiàn)在圖6的右側(cè)垂直條的形式 。</p><p>  圖6 速度規(guī)則基于FLC使用,使用概念是表1中給出</p><p>  傳統(tǒng)的重力中心[14]的方法已被應(yīng)用于模糊輸出的非模糊化。先進(jìn)的FLC的控制面已示于圖7中。正如上面提到的,從FLC輸出供應(yīng)

28、到AWP的速率PID控制器。AWP的速率被控制輸入到后續(xù)的控制系統(tǒng),通過(guò)控制油壓泵(圖2)旋轉(zhuǎn)的速度。速度控制器的設(shè)置經(jīng)過(guò)精心調(diào)校,以確保非周期性過(guò)渡(不過(guò)沖),即使在分步激發(fā)的情況下(參見(jiàn)圖10和11)。</p><p>  3.2 SOC控制器</p><p>  線(xiàn)性PID控制器的已被應(yīng)用于控制電池的SOC(圖3)。SOC的實(shí)際值從Ep被連續(xù)地估算。(1)使用電池電流測(cè)量。一個(gè)額外

29、的控制單元允許用于驅(qū)動(dòng)電動(dòng)液壓閥的線(xiàn)圈閥R1和R2。電動(dòng)液壓閥的控制信號(hào),用于獲得供應(yīng)壓力p2的測(cè)量,根據(jù)活塞壓力P1,以及電池的電流和電壓(I,U)。</p><p>  在提升階段的AWP,所述的控制單元提供了的電動(dòng)液壓閥(7)和(8)的一個(gè)適當(dāng)?shù)募ぐl(fā)。結(jié)果,根據(jù)氣缸的滑閥腔的與主油壓供給線(xiàn)連接。后一個(gè)AWP要求的位置達(dá)到時(shí),閥(8)朝著它的中間位置驅(qū)動(dòng),這將完成的平臺(tái)的移動(dòng)。在這里,內(nèi)燃機(jī)燃燒的能量可用于電

30、池充電。在電池充電階段,充電控制器還在控制壓合液壓缸的滑閥腔室。這防止不愉快情況,AWP的意外震搖所導(dǎo)致的負(fù)載變化。電動(dòng)液壓閥(7)將切換到位置,引導(dǎo)油從泵(2)到油箱在達(dá)到所要求的電池充電水平之后。</p><p>  從低級(jí)階段的平臺(tái)開(kāi)始,控制單元再次切換閥(7),均衡的供應(yīng)和根據(jù)活塞油的壓力。緊隨其后,閥(8)將被切換成上下移動(dòng)的平臺(tái)。勢(shì)能平臺(tái)在這一運(yùn)動(dòng)期間被轉(zhuǎn)換成電的形式,并用于電池充電。</p&g

31、t;<p>  圖7 控制表面的FLC</p><p>  3.3 無(wú)沖擊切換系統(tǒng)</p><p>  模擬實(shí)驗(yàn)顯示,在控制單元的操作模式切換期間會(huì)出現(xiàn)控制信號(hào)的逐步變化。這種現(xiàn)象應(yīng)該被消除,因?yàn)樗赡芙档突旌蟿?dòng)力驅(qū)動(dòng)的可靠性數(shù)據(jù)。例如,一個(gè)逐步改變的的控制信號(hào),強(qiáng)制電動(dòng)馬達(dá)動(dòng)態(tài)變化的旋轉(zhuǎn)速度,導(dǎo)致壓力在供油線(xiàn)擺動(dòng)。</p><p>  一個(gè)特別小組

32、已經(jīng)開(kāi)發(fā),以避免突然變化的混合動(dòng)力驅(qū)動(dòng)控制信號(hào)的潛在影響。 “本單元的概念已被示于圖 8。</p><p>  塊P1,I1,D1分別表示:成比例的PID1控制器的加-積分 加-導(dǎo)數(shù)成分??刂破鞯闹饕糠质桥溆性O(shè)置控制器輸出初始值的輸入配置。切換單元跟蹤各自的輸出:控制器PID1和PID2的OUT1和OUT2。在控制器輸出切換的時(shí)刻,跟蹤系統(tǒng)的設(shè)置輸出的積分動(dòng)作I1和I2的值滿(mǎn)足下列條件:</p>

33、<p>  一)I1= OUT1切換到SOC控制器, 二)I2=OUT2時(shí),切換到AWP速度控制器。</p><p>  控制誤差值e切換的時(shí)刻(t = 0時(shí))補(bǔ)償輔助值e k,由校正單元生成。校正值e k從值E0= SP_vp-PV_vp下降到零值,在預(yù)定義的時(shí)間間隔Δt內(nèi)。這意味著,OUT1和OUT2的值將等于在轉(zhuǎn)換i.e. 控制值時(shí)對(duì)于直流電動(dòng)機(jī)控制器的不會(huì)改變切換時(shí)刻。此操作可確保的切

34、換電動(dòng)機(jī)控制裝置設(shè)定值時(shí)無(wú)沖擊。后來(lái)Δt消逝i.e.= 0時(shí),輸入的PID1控制器er=e 。</p><p>  4.模擬調(diào)查 混合動(dòng)力驅(qū)動(dòng)在Matlab的Simulink環(huán)境下的分析模型的基礎(chǔ)上已經(jīng)進(jìn)行了模擬調(diào)查。圖[11]中給出。模型的調(diào)整參數(shù)部分是從專(zhuān)用汽車(chē)MONTRAKS的開(kāi)發(fā)調(diào)查[12]所得的。開(kāi)發(fā)的仿真模型具有的一般框圖被示于圖 9。</p><p>  圖8 交換

35、單元的方塊圖 </p><p>  圖9 MONTRAKS驅(qū)動(dòng)裝置模型的方塊圖</p><p>  以下組的主要參數(shù)已被用于模擬調(diào)查:</p><p>  電解鉛蓄電池標(biāo)稱(chēng)容量Q nom=200Ah;額定電壓U nom=48 V,?DC電機(jī):額定功率P nom = 5千瓦,標(biāo)稱(chēng)轉(zhuǎn)速速度n nom =2300 rpm,?柴油機(jī)

36、額定功率N = 120千瓦?液壓泵提供的標(biāo)稱(chēng)單位QP =42.3?10-6 m3/rev?液壓缸活塞直徑D = 10毫米,最大行程S =0.65米?AWP的慣性負(fù)載:M= 680千克?AWP允許以V max=0.5米/秒速度的提升/降低:?電池充電的初級(jí)水平SOC(T0)= 0.8。 模擬調(diào)查被作為循環(huán)周期為T(mén) =18秒假設(shè)的職務(wù)執(zhí)行的,以下是幾個(gè)階段:?SPL階段 - 解除平臺(tái)ΔH=1.6米,?SPP階段 - 停

37、車(chē)平臺(tái),tp=5秒,?SPD階段 - 降低平臺(tái)ΔH=1.6米。提升和下降A(chǔ)WP速度的模擬結(jié)果已給定圖10和11。</p><p>  圖10. AWP 的速度在 SPL 階段.</p><p>  圖11. AWP 的速度在SPD 階段 如3.1節(jié)中提到的,速度設(shè)定值由FLC生成。在早期開(kāi)始的平臺(tái)提升階段(圖10)和更低的階段(圖11),當(dāng)控制誤差最大,F(xiàn)LC快速推動(dòng)最大的輸出

38、值。在實(shí)際系統(tǒng)中,這可能造成阻尼以低振幅的速度振蕩(參照?qǐng)D10)。 平臺(tái)速度的設(shè)定值和實(shí)際值在平臺(tái)運(yùn)行的結(jié)束階段會(huì)無(wú)效。這個(gè)合理的方法,保證了所要平臺(tái)的位置。一個(gè)較低的平臺(tái)改變電池的充電水平。在AWP的工作期間SOC的改變示于圖 12。輕微電池放電過(guò)程被觀察到在SPP階段。這是由于由電動(dòng)馬達(dá)裝載電池運(yùn)行液壓泵所造成的。在SPD階段,可觀察到SOC增加是由平臺(tái)的勢(shì)能轉(zhuǎn)換和再生的。能量回收比率(在SPD階段熱能源的份額比上SPL階段所使用的

39、能源)以約36%為例被考慮。</p><p>  圖12 電池SOC改變占空比期間 建議配置電池放電的每一個(gè)責(zé)任周期是0.017%。連續(xù)循環(huán)的模擬得出結(jié)論,SOC達(dá)到其最低值0.3在2920循環(huán)周期之后。這是相當(dāng)于14.6 h工作時(shí)間,見(jiàn)圖13。AWP的有效使用時(shí)間占整個(gè)工作周期時(shí)間74%并達(dá)到2.5小時(shí)[12]。從而可以得出結(jié)論,即AWP的驅(qū)動(dòng)電源只有在電池不過(guò)度放電時(shí)才能夠供給的電動(dòng)機(jī)。如下所述,為整

40、個(gè)車(chē)輛的工作時(shí)間估計(jì)平均燃油消耗量可以降低約24%。</p><p>  圖13 電池SOC下降5.結(jié)束語(yǔ) 一個(gè)用于混合動(dòng)力驅(qū)動(dòng),由AWP速度控制器,AWP位置控制器和電池充電控制器組成的兩級(jí)多輸出控制系統(tǒng)結(jié)構(gòu),已經(jīng)研制成功。該系統(tǒng)允許轉(zhuǎn)移系統(tǒng)的工作點(diǎn)使其運(yùn)動(dòng)軌跡能達(dá)到最佳的節(jié)能效果區(qū)域。模擬混合動(dòng)力驅(qū)動(dòng)的調(diào)查結(jié)果,實(shí)驗(yàn)驗(yàn)證表明了所開(kāi)發(fā)的控制系統(tǒng)的正確性。 取得的模擬結(jié)果已經(jīng)制定了一個(gè)固定的基礎(chǔ),發(fā)展

41、用于發(fā)展原型實(shí)驗(yàn)室控系統(tǒng)的調(diào)查。本文提出的控制系統(tǒng)結(jié)構(gòu)可以考慮用在混合動(dòng)力驅(qū)動(dòng)器的應(yīng)用程序中,其在占空比之后致動(dòng)元件改變它的潛在能量。例如:叉車(chē),高空作業(yè)平臺(tái),安裝轉(zhuǎn)盤(pán)的拖車(chē),移動(dòng)式起重機(jī)等。MONTRAKS需要增加現(xiàn)有的高空作業(yè)平臺(tái)驅(qū)動(dòng)器的投資,估計(jì)占車(chē)輛總成本的2%。為進(jìn)一步推廣應(yīng)用的技術(shù)經(jīng)濟(jì)可行性,研究報(bào)告應(yīng)詳細(xì)到每個(gè)個(gè)案。</p><p>  致謝 作者答謝在波蘭教育部和高等教育部的資金支持下獲

42、得5 TO7C 0192:為市政工程發(fā)展建設(shè)環(huán)保的專(zhuān)用車(chē)和機(jī)器的電動(dòng)機(jī)械動(dòng)力傳送單元。</p><p><b>  參考文獻(xiàn)</b></p><p>  [1] B.V. Arburg, Hybrid technology growing momentum, Hybrid Truck Users Forum,San Antonio, 2003 http://cals

43、tart.org.</p><p>  [2] J.S. Stecki, F. Conrad, P.L. Matheson, A. Rush, Development of a hydraulic drive for a novel hybrid diesel-hydraulic system for large commercial vehicles, 5-th JFPS International Sympo

44、sium on Fluid Power, Nara, Japan, 2, 2002, pp. 425–430.</p><p>  [3] B. Baumman, G.Washington, B. Glenn, G. Rizzoni, Mechatronic design and control of hybrid electric vehicles, IEEE transactions on mechatron

45、ics, 55(1), 2000, pp.58–72.</p><p>  [4] http://www.valla.co.</p><p>  [5] C. Lin, H. Peng, J.W. Grizzle, J. Liu, M. Busdiecker, Control System Development for an Advanced-Technology Medium-Duty

46、 Hybrid Electric Truck, SAE International Truck & Bus Meeting & Exhibition, Fort Worth, TX, USA, SAE Paper 2003-01-3369,2003.</p><p>  [6] R. Nellums, J. Steffen, S. Naito, Class 4 Hybrid Truck for P

47、ick Up and Delivery Applications, SAE International Truck & Bus Meeting & Exhibition, FortWorth, TX,USA, SAE Paper 2003-01-3368, 2003.</p><p>  [7] C. Chan, The state of the art of electric and hybri

48、d vehicles, Proc. IEEE 90 (2) (2002)247–275.</p><p>  [8] M. Ehsani, Y. Gao, S.E. Gay, A. Emadi, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design, CRC Press, Washing

49、ton D.C., 2004.</p><p>  [9] J.B. Burl, J.E. Beard, Control Strategies for a Series-Parallel Hybrid Electric Vehicle,SAE 2001 World Congress, Detroit, SAE Paper 2001-01-1354, 2001.</p><p>  [10]

50、 D. Choi, M. Im, H. Kim, An operation algorithm with state of charge recovery for a parallel-type hybrid vehicle, Proc. of the Institution of Mechanical Engineers, PartD, J. Automob. Eng. 217 (9) (2003) 801–807.</p>

51、;<p>  [11] J. Krasucki, A. Rostkowski, Idea of application of electric drives in hydraulic power systems on example of actuating units of automotive crane MONTRAKS, (in Polish),Prz. Mech. 9 (2005) 15–19.</p>

52、;<p>  [12] A. Rostkowski, J. Krasucki, M. Barty?, The analysis of hydraulic driving system of special vehicle MONTRAKS in operating conditions, XX Conference on Problems of Heavy Duty Machines Development. Zakopa

53、ne, Poland, 2007, pp. 269–271, (in Polish).</p><p>  [13] D.L. Buntin, J.W. Howze, A switching logic controller for a hybrid electric/ICE vehicle, Proc. of American Control Conference, Seattle, 2, ISBN: 0-78

54、03-2445-5,1995, pp. 1169–1175.</p><p>  [14] J.M. Mendel, Fuzzy logic systems for engineering, Proc. IEEE 83 (1995) 345–377.</p><p><b>  英文原文</b></p><p>  Control strate

55、gy of the hybrid drive for vehicle mounted aerial work platform</p><p>  Janusz Krasucki a, Andrzej Rostkowski a, ?ukasz Gozdek b, Micha? Barty? b,</p><p>  a Construction Equipment Research Ins

56、titute, Napoleona 2, 05-230 Koby?ka, Poland</p><p>  b Warsaw University of Technology, Institute of Automatic Control and Robotics, Boboli 8, 02-525 Warsaw, Poland</p><p>  The development proc

57、ess i.e. assumptions, construction, simulations and analysis of a control strategy for thehybrid drive of the vehicle mounted aerial work platform is presented in the paper. Particular attention ispaid to the development

58、 of the control system strategy ensuring appropriate energy recuperation by makinguse of energy stored in the electrochemical form. The control strategy is built up around the concept of bilevelhierarchic control system.

59、 The elevation control of the aerial wor</p><p>  special vehicle MONTRAKS.</p><p>  1. Introduction</p><p>  The reduction of vehicle emission has been an objective of research for

60、 many years; partly it is forced by increasingly stringent environmental legislation. The Kyoto protocol, whichwas adopted at the COP3in December 1997, is aimed to decrease the green house gas emissions(GHG) by an averag

61、e of 5% referring to 1990 levels. It came into force on February 16, 2005 following its ratification by Russia.</p><p>  Hybrid systems are now gaining attention as a means for reducing GHG emissions by impr

62、oving fuel economy and energy eficiency.</p><p>  Market for hybrid driven vehicles is growing up dynamically sincemany years. Contemporary, eleven large car manufacturers use to deliver or to intensively de

63、velop hybrid driven vehicles. Even that is mainly focusing on passenger cars segment, it should be stressed that the remarkable effort is undertaken to implement hybrid drives in the trucks, delivery vans and buses [1,2]

64、.</p><p>  WestStart-CALSTART [3], an advanced transportation technologies consortium, supported by U.S. Army National Automotive Center(NAC), organized the pilot program as part of its Hybrid Truck Users Fo

65、rum (HTUF?) program, to speed up and to assist hybrid commercialization. According to the forecasts elaborated by CALSTART,the hybrid driven trucks market share will grow reaching ca 9% in 2010 and near 18.5% in 2020.<

66、;/p><p>  Still heavy duty machines and special purpose vehicles are the object of possible implementation for hybrid drive solution. However there are some doubts, if that application is economically feasible.

67、Considering passenger cars,in respect of environmental regulations,important role plays the “effect of the scale”. In case of heavy duty machines, aerial work platforms, pick and carry mobile cranes or special vehicles w

68、ith lift equipment, the application of hybrid solution is driven with operating </p><p>  For many cases, working conditions for that class of machinerystrongly limits or even eliminates the application of c

69、ombustion engines. In particular that is case of closed space areas such as factory shops, warehouses, intrinsically safe zones, etc. Here the implementation of diesel-electric drives could considerably extend possible u

70、se of that kind of equipment. Very unique and on the other side common area of services is municipal services and works used to be processed during night in the hi</p><p>  An example on how to meet the ever

71、-increasing regulations controlling environmental conditions during indoor lifting operations is the battery powered cranes line designed by Valla Corporation [4],which recently extended the offer for hybrid solution. An

72、other example is a hybrid system investigated by Eaton Corporation [5,6]for medium trucks with optional aerial work platform equipment.Eaton began commercializing its medium-duty hybrid system in August 2007 in a wide va

73、riety of applications such</p><p>  A hybrid vehicle is defined as one that has more than one source of power. Several different types of hybrid solutions have beenconsidered in the past and are still underg

74、oing extensive research, </p><p>  Fig. 1. Special purpose vehicle MONTRAKS 3PS.</p><p>  such as Hybrid Electric Vehicles (HEVs) [1], which use a motor/generator and battery packs (or other ele

75、ctrical storage devices) and mechanical hybrids which use flywheels to store energy. Hybrid Hydraulic Vehicles (HHVs) [2], which store kinetic energy captured during braking events and store it in hydro-pneumatic accumul

76、ators and return energy to driveline during vehicle acceleration. Various different structures of hybrid drives (serial and parallel) have been developed. [7,8]</p><p>  The hybrid electric system maintains

77、conventional drive train architecture while adding the ability to enhance engine power withelectrical one.</p><p>  One feature of this system is its ability to recover energy normally lost during braking an

78、d store the energy in batteries. The stored energy is used to improve fuel economy and vehicle performance for a given speed or used to operate the vehicle with electric power only.</p><p>  The control of h

79、ybrid power trains is more complicated than the control of ICE only power train. First, one needs to determine the optimal operating mode among five possible modes (motor only,engine only, power assist, recharge, and reg

80、enerative). Furthermore,when the power assist mode or the recharge mode is selected, the enginepower and motor power needs to be selected to achieve optimal fuel economy, battery charge balance, and operability. With the

81、 increased power train complexity and the ne</p><p>  Fig. 2. Structure of the hybrid drive unit. Notion: x — piston stem displacement, v — piston stem velocity, p1 — under piston pressure, R1 — switching si

82、gnal of valve (8), p2 — supply pressure, R2 — switching signal of valve (7), n1 — EM rotational speed, U — battery voltage, I — battery current, n2 — ICE rotational speed, OUT — setpoint of electric motor controller.<

83、/p><p>  Fig. 3. Structure of the control system. Notion: SP_xp — Setpoint of the AWP position. PV_xp — Actual value of the AWP position. e_xp — AWP position control error. SP_vp — Setpoint of the lifting or lo

84、wer velocity of the AWP. PV_vp — Actual value of the AWP velocity. SP_SOC — Setpoint of the battery SOC. PV_SOC — Actual value of battery SOC. PV_P1 — Actual value of the pressure p1. PV_P2 — Actual value of the pressure

85、 p2. OUT1, OUT2 — Outputs of PID controllers.</p><p>  The analysis of power control systems optimizing: power efficiency factors, fuel consumption and emissions has been given in[3,9,10]. Investigations hav

86、e been mainly focused on the possibility of kinetic energy recuperation in the phase of vehicle braking.</p><p>  In this paper, the design of a power management control system isdescribed for a hybrid drive

87、 system of special purpose vehicle with hydraulic aerial work platform (AWP) equipment. For that type of vehicles (stop-and-go duty cycles) the potential energy of the load being handled with AWP should be seriously cons

88、idered as recyclable [11,12].</p><p>  The major advantage of the proposed hybrid drive over othersolutions is a simple drive architecture. It differs from known solutions, thosewidely used in personal cars.

89、 The classic approach (personal cars) needs full redesign of power transmission system. The innovative approach for the special purpose vehicles requires only extension of classic ICE drive with extension unit. Extension

90、 unit is composed of electricmotor coupledwith hydraulic pump/motor. That solution allows to differentiate the p</p><p>  Two-layer hierarchical control system architecture is considered in this paper. A low

91、er control level is built by application of local classic proportional-integral-derivative (PID) controllers. A higher control level is developed around a fuzzy logic controller (FLC) with the intention of dynamically se

92、tting out control rules for lower level local controllers</p><p>  2. Characteristics of the target system</p><p>  A specialized automotive vehicle MONTRAKS (Fig. 1) is intended for repairing a

93、nd maintenance of tram and trolley-bus overhead wire system, assembling and disassembling of rail track sections and is exploited by the municipal communication services.</p><p>  Such types of vehicles are

94、usually designed on the bases of regular trucks undercarriage equipped with appropriate working accessories. The equipment is built up around the aerial work platform (AWP) (1) embedded at the end of the boom (2) driven

95、by the set of two hydraulic cylinders and hydraulic swing motor (3).Besides a standard road running on the tires, the major feature of these vehicles is the possibility to move on rail run. That is achieved with addition

96、al set of rail wheels (4) which a</p><p>  Disadvantages mentioned above may be eliminated for instance by introducing an additional electric motor (EM) powered by an electrochemical battery pack. In this ca

97、se, the ICE will deliver</p><p>  mechanical power when the vehicle moves from/to its operation area. While parking the vehicle's power demand from the working equipment will be balanced from the EM and

98、optionally from the ICE.</p><p>  The structure of discussed hybrid drive is shown in Fig. 2</p><p>  Energy for the motor is supplied from a set of electrochemicalaccumulators (5). The primary

99、power source of the equipment drive unit is the EM. Motor traction parameters are controlled by the pulse width modulator (6). It is possible to reverse the motor's operation into generator mode. The EM runs the hydr

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論