旋渦隧道溢洪道及液壓操作條件外文翻譯_第1頁
已閱讀1頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、<p>  VORTEX-TUNNEL SPILLWAYS AND HYDRAULIC OPERATING CONDITIONS</p><p>  M. A. Galant, B. A. Zhivotovskii,V. B. Rodionov,and N. N. Rozanova</p><p>  Executive Summary</p><p> 

2、 Spillway tunnel is widely used in high-pressure hydraulic engineering. Therefore, this type of spillway this study is an important and urgent task to help in the use of these types of hydraulic construction of spillway

3、can help develop the best and reliable spillway structure. This is confirmed by vortex spillway tunnel in the design of a pressure fluctuation and intensity of turbulent energy dissipation process</p><p>  K

4、eywords: vortex spillway energy dissipation</p><p>  Tunnel spillways are widely used in medium- and high-pressure hydraulic works. It is therefore an important and pressing task to improve the construct

5、ions used in these types of spillways and to develop optimal and reliable spillway structures.With this in mind, we would like to turn the reader's attention to essentially novel (i.e., in terms of configuration and

6、operating conditions) vortex spillways which utilize vortex-type flows. On the one hand, these types of spillways make possible large-</p><p>  Evaluation of the Design and Geometric Dimensions of the Elemen

7、ts of a Spillway. The selection of a particular type of spillway depends on a number of factors, such as the effective head, the magnitude of the escapage discharge, theconfiguration of the hydraulic project (for example

8、, the use of a river diversion tunnel during the operational period or of the water conduits of hydroelectric power plants in the construction period), conditions in the discharge of the flow into the tailrace channel<

9、;/p><p>  It should be noted that the eddy node is designed so that A = Areq, where Are q is the value of the geometric parameter of the vortex generator needed to maintain the required prerotation of the flow.

10、 For example, for the conditions of the Tupolangskii vortex-type spillway, Are q = 1.4; for the Tel'mamskii hydraulic works, Are q = 0.6; and for the Rogunskii spillway, Ar:q = 1.1.A second parameter which characteri

11、zes the degree of rotation of the flow on individual legs of the tailrace segment is</p><p>  From the foregoing discussion it follows that in those cases in which there is no entrapment of air, vortex spill

12、ways may be modeled with respect to all the required criteria.</p><p>  The situation is different in the case of aerated flow, which is also difficult to model. In hydraulic models with external atmospheric

13、 pressure, the volumetric content of air varies slightly as the flow is transported down the shaft to the critical section, whereas in the physical structure, the entrapped air, moving downwards, is compressed by the inc

14、reasing pressure of the liquid. Thus, in the case of the spillway at the Teri hydraulic works (Fig. 1), the percent compression in the physical s</p><p>  The studies that were performed showed that in the s

15、haft which delivers water to the flow rotation node, an intermediate water level is maintained when the flow rate is less than the design rate. This bench mark depends on the magnitude of the escapage discharge and the r

16、esistance of the spillway segment situated at a lower level . In the constructions that have been considered here, maximum (design) flow rates through the shaft are achieved when the shaft is flooded and there is no acce

17、ss to th</p><p>  For a tailrace conduit with cylindrical initial segment, the free area downstream increases from 0.7 in the section at a distance 1.3dv from the axis of the shaft to 0.77 in the section at

18、a distance 12.4dr, while the angle of flow rotation and the axial and circumferential flow rates all decrease. In the case of a conical initial segment, the relative area of the gas-vapor core decreases from 0.987 to 0.8

19、74 over the length of the conical segment, while the angle of flow rotation decreases to be</p><p>  A characteristic feature of the construction that is being proposed in the present article is the presence

20、 of an energy dissipation chamber in which vortex-type flow experiences an abrupt expansion and is rapidly transformed into axial flow if the discharge of flow from the tailrace tunnel is directed into the atmosphere.Equ

21、ality of the centrifugal acceleration to the free fall acceleration is an essential condition for breakdown of thevortex structure of the flow in the tunnel. Once equality is</p><p>  The rate of energy diss

22、ipation differs between the two versions that are being considered here (Fig. 8). In the case of a cylindrical initial segment, energy dissipation occurs smoothly, with only 60% of the initial energy of the flow dissipat

23、ing over a distance of 15dw (Fig. 8a). In a system with a conical vortex generator and energy dissipation chamber behind the generator, 86% of the initial energy of the flow dissipates as it travels through this segment,

24、</p><p>  CONCLUSIONS</p><p>  Application of the constructions ot vortex tunnel spillways that we have considered enable us to ensure effective dissipation of the excess kinetic energy and over

25、all reliability of the structure. The operating reliability of vortex spillways that are based on energy dissipation in the tailrace tunnel in accordance with the schemes that have been considered in the present article

26、is confirmed by the fact that the pressure fluctuations and the intensity of the turbulence dissipate smoothly throug</p><p>  支持網(wǎng)頁翻譯,在輸入框輸入網(wǎng)頁地址即可 </p><p>  提供一鍵清空、復(fù)制功能、支持雙語對照查看,使您體驗(yàn)更加流暢</p&g

27、t;<p><b>  分享到 </b></p><p><b>  翻譯結(jié)果重試</b></p><p>  抱歉,系統(tǒng)響應(yīng)超時(shí),請稍后再試</p><p>  支持中英、中日在線互譯 </p><p>  支持網(wǎng)頁翻譯,在輸入框輸入網(wǎng)頁地址即可 </p><p&

28、gt;  提供一鍵清空、復(fù)制功能、支持雙語對照查看,使您體驗(yàn)更加流暢</p><p>  抱歉,系統(tǒng)響應(yīng)超時(shí),請稍后再試</p><p>  支持中英、中日在線互譯 </p><p>  支持網(wǎng)頁翻譯,在輸入框輸入網(wǎng)頁地址即可 </p><p>  提供一鍵清空、復(fù)制功能、支持雙語對照查看,使您體驗(yàn)更加流暢</p><p&

29、gt;<b>  eferences</b></p><p>  1.Turfan, M. Turkey's hydropower potential and development policies, hydroelectric dams (4), Turkey: 1999.</p><p>  2.APSage, systems engineering m

30、ethods and applications. IEEE Press, New York, 1977.</p><p>  3.H.Chestnut, water energy projects. Wiley, New York: 1968.</p><p>  4.REMachol. Systems Engineering Handbook, MC-GRAW Hill, New Yor

31、k: 1965.</p><p>  5.ADHall. Systems engineering methodology. Fan ? Nostrand, Princeton, NJ: 1962.</p><p>  6.Feng Shang. Water Resources Engineering, Wuhan: Hubei Science and Technology Press, 1

32、990.</p><p>  7.Wang Hongshuo, Weng situation up. Hydraulic Structures. Beijing: China Water Power Press, 1999.</p><p>  旋渦隧道溢洪道及液壓操作條件</p><p>  M.A,戈藍(lán),B.A.諾維科娃,V. B.羅季奧諾夫,和N.N.羅薩娜娃

33、</p><p><b>  內(nèi)容摘要</b></p><p>  隧道式溢洪道,廣泛應(yīng)用于中、高壓液壓工程。因此研究這類溢洪道這是一個(gè)重要的和緊迫的任務(wù),幫助在水工建筑中使用這些類型的溢洪道可以幫助制定最佳的和可靠的溢洪道結(jié)構(gòu)。本文也證實(shí)了渦溢洪道消能在水洞中的設(shè)計(jì)而具有壓力波動(dòng)和強(qiáng)度的湍流耗散能量的過程</p><p>  關(guān)鍵詞:溢洪道

34、 渦流 能量耗散 </p><p>  隧道式溢洪道,廣泛應(yīng)用于中、高壓液壓工程。因此研究這類溢洪道這是一個(gè)重要的和緊迫的任務(wù),幫助在水工建筑中使用這些類型的溢洪道可以幫助制定最佳的和可靠的溢洪道結(jié)構(gòu)。有鑒于此,我們希望引起讀者的注意,基本上是新的概念(即,在配置和操作條件),利用旋渦流溢洪道。一方面,這些類型的溢洪道可能大規(guī)模的耗散的動(dòng)能的流動(dòng)的尾段。因此,流量旋渦旋式和軸向流經(jīng)溢洪道的尾端,不會(huì)產(chǎn)生汽蝕損

35、害。另一方面,在危險(xiǎn)的影響下,高流量的流線型面下降超過長度時(shí),最初的尾水管增加的壓力在墻上所造成的離心力的影響。一些結(jié)構(gòu)性的研究隧道溢洪道液壓等工程rogunskii,泰瑞,tel'mamskii,和tupolangskii液壓工程的基礎(chǔ)上存在的不同的經(jīng)營原則現(xiàn)在已經(jīng)完成了。這些結(jié)構(gòu)可能是分為以下基本組:-渦旋式(或所謂的single-vortex型,是研究光滑溢洪道水流的消能和設(shè)計(jì)隧道的長度和高度),而橫截面的隧道是圓或近圓其

36、整個(gè)長度。渦旋式溢洪道與越來越大的能量耗散的旋渦流在較短的長度- <(60——80)高溫非圓斷面導(dǎo)流洞(馬蹄形,方形,三角形),連接到渦室或通過一個(gè)耗能(擴(kuò)大)室或順利經(jīng)過過渡斷段;-溢洪道兩根或</p><p>  評(píng)價(jià)設(shè)計(jì)溢洪道的尺寸。選擇一個(gè)特定的溢洪道類型取決于很多因素,如有效的水頭,巨大的escapage放電,這是配置的液壓項(xiàng)目(例如,在運(yùn)營期間或的水管道水力發(fā)電廠在施工期間使用一個(gè)河引水隧道),

37、而入口的設(shè)計(jì)是根據(jù)設(shè)計(jì)規(guī)范制定的。其目的在保持其運(yùn)輸能力時(shí),使運(yùn)作中的水能自由下泄。軸是垂直或傾斜的。軸的直徑是由近等于尾水管的直徑。最大平均流量在一個(gè)軸的范圍是15 - 20米/秒。</p><p>  渦流產(chǎn)生裝置。整個(gè)長度的尾段溢洪道,以及一定程度的洪水的軸(即,其水力工況Q<Qdes)。這是負(fù)責(zé)運(yùn)輸能力和流動(dòng)制度基本的條件。渦的流動(dòng)是最簡單設(shè)計(jì)中的是一個(gè)節(jié)點(diǎn),包括在建設(shè)一個(gè)渦流發(fā)生器(平面或平行船中

38、體;)?;咎攸c(diǎn)是一個(gè)渦流發(fā)生器位于鋼筋混凝土距離隧道軸線為重心的“關(guān)鍵”的部分地區(qū)。對于尾水隧道管道以外的渦流發(fā)生器。引水管道的渦軸發(fā)電機(jī)的軸是呈傾斜角度的。具有運(yùn)動(dòng)學(xué)特征的旋渦流動(dòng)和運(yùn)輸能力取決于一個(gè)重要的溢洪道。</p><p>  對渦流產(chǎn)生裝置的設(shè)計(jì)。該系數(shù)的tangential-type渦流生成腦電圖=安全裝置(這里是平均流量在一個(gè)圓形出口段的渦流節(jié)點(diǎn))。應(yīng)該指出的是,渦流節(jié)點(diǎn)設(shè)計(jì)=空調(diào)機(jī)作用,其中的

39、幾何參數(shù)是該渦流發(fā)生器需要維持所需的預(yù)旋流動(dòng)時(shí)間的數(shù)據(jù)。例如,tupolangskii渦旋式溢洪道,Areq=1.4;為tel'mamskii水利工程,Areq =0.6;為rogunskii溢洪道,應(yīng)安排為:Areq =1.1。另一個(gè)特征參數(shù)的旋轉(zhuǎn)度是針對溢洪道的尾段,是積分流旋轉(zhuǎn)參數(shù)。預(yù)旋流動(dòng)的渦流生成裝置在距離3.0dt處從軸的基礎(chǔ)上來確定圖形依賴性。溢洪道是水庫等水利建筑物的防洪設(shè)備,多筑在水壩的一側(cè),象一個(gè)大槽,當(dāng)水庫

40、里水位超過安全限度時(shí),水就從溢洪道向下游流出,防止水壩被毀壞。 包括:進(jìn)水渠 控制段 泄槽 出水渠。溢洪道按泄洪標(biāo)準(zhǔn)和運(yùn)用情況,分為正常溢洪道和非常溢洪道。前者用以宣泄設(shè)計(jì)洪水,后者用于宣泄非常洪水。按其所在位置,分為河床式溢洪道和岸邊溢洪道。河床式溢洪道經(jīng)由壩身溢洪。岸邊溢洪道按結(jié)構(gòu)形式可分為:①正槽溢洪道。泄槽與溢流堰正交,過堰水流與泄槽軸線方向一致。②側(cè)槽溢洪道。溢流堰大致沿等高線布</p><p>  被

41、確定類型的隧道溢洪道設(shè)計(jì)和選擇。該方法決定耗散過剩能量(無論是均勻或越來越密集耗散)和確定橫截面面積的終端部分的尾水隧洞的等效直徑,及翻譯結(jié)果重試消能室的位置選擇。選擇設(shè)計(jì)的尺寸取決于速度旋轉(zhuǎn)流入口和后室長度的尾水隧洞。對尾水隧洞,最好的方法是使用一個(gè)漸縮管(或圓柱)段為共軛條件之間的切向渦輪發(fā)電機(jī)和消能室。本部分將負(fù)責(zé)以下功能:使減少旋轉(zhuǎn)速度的水流進(jìn)入消能室,均衡流量轉(zhuǎn)向最大軸部分的流動(dòng)速率的中央部分,并減少其動(dòng)態(tài)載荷在旋轉(zhuǎn)節(jié)點(diǎn)的流量

42、。從上述討論如下,在這些案件中沒有空氣壓迫,渦旋式溢洪道可能是模仿方面的所有要求的標(biāo)準(zhǔn)。情況是不同的,在案件的摻氣水流,這也是難以模型。在水力模型外部大氣壓力時(shí),空氣的體積含量略有不同的流動(dòng)是礦井下運(yùn)輸?shù)年P(guān)鍵的部分,而在物理結(jié)構(gòu),包埋空氣,向下移動(dòng),壓縮的增加液體壓力。因此,在方案的溢洪道在泰瑞水利工程,百分壓的物理結(jié)構(gòu)是高達(dá)15倍,而在開放模型建造一個(gè)1 : 60規(guī)模,壓縮的百分點(diǎn)在1.4 - 1.5范圍,即,十分之一的價(jià)值發(fā)現(xiàn)的領(lǐng)域

43、。此外,在實(shí)驗(yàn)中使用的模型,有增加指出在角度的旋轉(zhuǎn)流動(dòng)中的初始段的尾水隧洞為不良影響,排放減少的內(nèi)容和空氣的混合物增加</p><p><b>  結(jié)論</b></p><p>  我們考慮了溢洪道使我們有效的保證耗散過剩的動(dòng)能和結(jié)構(gòu)整體可靠性。在運(yùn)行可靠性的基礎(chǔ)上,渦溢洪道消能在水洞中的設(shè)計(jì),在目前的文章中得到了證實(shí),而具有壓力波動(dòng)和強(qiáng)度的湍流耗散能量的過程也得到認(rèn)

44、證。溢洪道的泄量,溢流前緣總寬度及堰頂高程的選定是水利水電工程的一個(gè)決定條件。</p><p><b>  參 考 文 獻(xiàn)</b></p><p>  1.Turfan,M.土耳其的水電潛力和發(fā)展政策,水電大壩(4),土耳其:1999.</p><p>  2.APSage,系統(tǒng)工程方法和應(yīng)用.IEEE出版社,紐約,1977.</p>

45、;<p>  3.H.Chestnut,水資源能源工程.威利,紐約:1968.</p><p>  4.REMachol.系統(tǒng)工程手冊,MC-GRAW山,紐約:1965.</p><p>  5.ADHall.系統(tǒng)工程的方法論.范·Nostrand,新澤西州普林斯頓:1962.</p><p>  6.Feng Shang.水資源工程.武漢:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論