版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、河北大學(xué)碩士學(xué)位論文基于筆畫結(jié)構(gòu)特征的脫機手寫漢字識別姓名:賈新彪申請學(xué)位級別:碩士專業(yè):計算機軟件與理論指導(dǎo)教師:田學(xué)東20100601Abstract IIAbstract Today, OCR technology for printed Chinese character has achieved the practical level. But, it is difficult to satisfy the demand of
2、 off-line handwritten Chinese character recognition. The main reason of this situation is the deformation of off-line handwritten Chinese characters. The single statistical feature extraction and the simple classificatio
3、n algorithm are not able to to adapt the changes of the handwritten Chinese characters’ style. So, in this paper, we use template method in which combination distance of strokes as judgemental criterion to recognize off-
4、line handwritten Chinese characters. The system consists of two stages, stroke structure feature extraction and matching. In the stage of stroke structure feature extraction, we get the Chinese characters’ skeleton thro
5、ugh thinning firstly, and then remove crossing points by measuring the degree of every pixel. The inflexion point can be got by max distance method, and then sub-stroke can be extracted by the crossing points and the inf
6、lexion point. In order to eliminate interference feature, the sub-strokes would be optimized. The sub-strokes which are linked together in original bitmap can be combined into strokes according to the similar matrix of s
7、ub-strokes. And the stroke structure feature would be constructed by using coordinates and the number of the strokes. In the stage of matching,using stroke structure features as the templates, the unknown character would
8、 match with the templates. The distances between the character and the templates would be calculated. And the character can be recognized by the above minimum distance. The experiments on off-line handwritten Chinese cha
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于筆畫結(jié)構(gòu)特征的脫機手寫漢字識別.pdf
- 基于筆畫重構(gòu)的脫機手寫漢字識別研究.pdf
- 基于筆畫的脫機手寫體漢字識別與研究.pdf
- 基于四角結(jié)構(gòu)特征的脫機手寫漢字識別.pdf
- 基于模糊筆畫方向特征的脫機手寫體漢字識別系統(tǒng).pdf
- 基于特征融合的脫機手寫體漢字識別.pdf
- 基于模糊劃分的脫機手寫漢字筆畫特征提取方法.pdf
- 基于Gabor理論的脫機手寫漢字識別.pdf
- 基于多層次重疊網(wǎng)格脫機手寫漢字識別
- 一種基于特征提取的脫機手寫漢字識別技術(shù).pdf
- 脫機手寫體漢字識別研究.pdf
- 基于細(xì)化處理的脫機手寫漢字識別研究.pdf
- 基于bandelet的脫機手寫體漢字識別研究.pdf
- 基于組合特征的小字符集脫機手寫漢字識別方法.pdf
- 基于SVM的脫機手寫體漢字識別研究.pdf
- 基于稀疏表示的脫機手寫體漢字識別研究.pdf
- 基于深度模型的脫機手寫體漢字識別研究.pdf
- 基于動態(tài)粗外圍方向線素特征的脫機手寫漢字識別.pdf
- 基于特征筆畫組的聯(lián)機手寫體漢字識別的研究.pdf
- 基于多層次重疊網(wǎng)格的脫機手寫漢字識別.pdf
評論
0/150
提交評論