版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、 The problems in this chapter are primarily mathematical. They are intended to give students some practice with the concepts introduced in Chapter 2, but the problems in themselves offer few economic insights. Conseq
2、uently, no commentary is provided. Results from some of the analytical problems are used in later chapters, however, and in those cases the student will be directed to here. Solutions 2.1 2 2 ( , ) 4 3 . U x y x y ? ?
3、a. 8 , x U x ?6 . y U y ?b. 8, x U ? 6. y U ?c. 8 6 . dU xdx ydy ? ?d. 4 . 3xyU dy xdx U y ? ? ? ?e. 2 2 4 1 3 2 16. ? ? ? ?f. 4 1 2. 3 2 3dy = = dx? ? ? ?g. The 16 U = contour line is an ellipse centered at th
4、e origin. The slope of the line at any point is given by 4 3 . dy dx x y ? ?2.2 a. Profits are given by 2 2 40 100. R C q q ? ? ? ? ? ? ?The maximum value is found by setting the derivative equal to 0: 4 40 0 d =
5、 q + dq? ? ?implies * 10 q ?and * 100.? ?CHAPTER 2: Mathematics for Microeconomics Chapter 2: Mathematics for Microeconomics 3 c. Differentiation of the original function at its optimal value yields ** 2 ( ) 0.5( )
6、. f t t g? ? ? ?Because the optimal value of t depends on , g 2 ** 2 ( ) 40 800 0.5( ) 0.5 , 2f t = t g g g? ? ? ? ? ? ? ? ? ? ? ? ?as was also shown in part c. d. If 32, g ? * 5 4. t ?Maximum height is 800 32 25.
7、?If 32.1, g ?maximum height is 800 32.1 24.92, ?a reduction of 0.08. This could have been predicted from the envelope theorem, since *2800 25 ( ) (.01) 0.08. 32 32 df t dg ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?2.6 a. Th
8、is is the volume of a rectangular solid made from a piece of metal which is x by 3x with the defined corner squares removed. b. The first order condition for maximum volume is given by 2 2 3 16 12 0. V x xt t t? ? ?
9、? ? ?Applying the quadratic formula to this expression yields 2 2 16 256 144 16 10.6 0.225 . 24 24x x x x x t x ? ? ? ? ? ?The second value given by the quadratic (1.11 ) x is obviously extraneous. c. If 0.225 , t x
10、?3 3 3 3 0.67 .04 .05 0.68 . V x x x x ? ? ? ?So volume increases without limit. d. This would require a solution using the Lagrangian method. The optimal solution requires solving three non-linear simultaneous equati
11、ons, a task not undertaken here. But it seems clear that the solution would involve a different relationship between t and x than in parts a–c. 2.7 a. Set up the Lagrangian: 1 2 1 2 5ln ( ). x x k x x ? ? ? ? ?
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 尼科爾森微觀經(jīng)濟理論-基本原理與擴展第9版課后習題詳解--偏好與效用
- 尼科爾森微觀經(jīng)濟理論-基本原理與擴展第9版課后習題詳解--偏好與效用
- 尼科爾森微觀經(jīng)濟理論_基本原理與擴展第9版課后習題詳解博弈定價模型
- 尼科爾森微觀經(jīng)濟理論_基本原理與擴展第9版課后習題詳解博弈定價模型
- 尼科爾森《微觀經(jīng)濟理論-基本原理與擴展》(第9版)課后習題詳解(第15章 博弈定價模型)
- 尼科爾森《微觀經(jīng)濟理論-基本原理與擴展》(第9版)課后習題詳解(第16章 勞動市場)
- 尼科爾森《微觀經(jīng)濟理論-基本原理與擴展》(第9版)課后習題詳解(第19章 信息經(jīng)濟學)
- 尼科爾森《微觀經(jīng)濟理論-基本原理與擴展》(第9版)課后習題詳解(第20章 外部性與公共品)
- 尼科爾森《微觀經(jīng)濟理論-基本原理與擴展》(第9版)課后習題詳解(第2章 最優(yōu)化的數(shù)學表達)
- 尼科爾森《微觀經(jīng)濟理論-基本原理與擴展》(第9版)課后習題詳解(第4章 效用最大化與選擇)
- 尼科爾森《微觀經(jīng)濟理論-基本原理與擴展》(第9版)課后習題詳解(第18章 不確定性和風險厭惡)
- 尼科爾森《微觀經(jīng)濟理論-基本原理與擴展》(第9版)課后習題詳解(第14章 不完全競爭市場的傳統(tǒng)模型)
- 尼科爾森《微觀經(jīng)濟理論-基本原理與擴展》(第9版)課后習題詳解(第10章 競爭性價格決定的局部均衡模型)
- 《高級微觀經(jīng)濟理論》第1516章習題
- 鋼結(jié)構(gòu)基本原理課后習題答案完全版
- 杰里瑞恩高級微觀經(jīng)濟理論上財版課后習題答案
- 鋼結(jié)構(gòu)基本原理課后習題答案完全版
- 材料成型基本原理課后答案
- 材料成型基本原理第2版劉全坤課后答案
- 馬克思主義基本原理概論2015版課后習題答案
評論
0/150
提交評論