版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and shar
2、ing with colleagues.Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.In most cases authors are permitted to
3、 post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encour
4、aged to visit:http://www.elsevier.com/authorsrightsAuthor's personal copyF.Congetal./JournalofNeuroscienceMethods223 (2014) 74–84 75fMRIdataincludetheblockdesignandtheevent-relateddesign(Panetal.,2011).Fortheblockdes
5、ign,thecontrastoffMRIdatabetweenthestimulusonsetandthestimulusoffsetisanalyzed.Fortheevent-relatedone,thedesignmatrixcanbeusedforregressionduringwhichthetemporalcourseofavoxelandthecorrespondingspatialmaparelearned.Witht
6、hedevelopmentoffMRIresearch,somestudiesevenreportedfMRIdataobtainedduringarealisticexperiencewherethestimulusisnaturalistic,continuousandlong(Allurietal.,2012;Hassonetal.,2004;HaynesandRees,2006;Kauppietal.,2010;Kayetal.
7、,2008;SpiersandMaguire,2007).Suchnaturalisticbraindatacanprovidemuchricherbrainresponsesforresearchandittendstobedifficulttodirectlyobtaintheprecisecontrastordesignmatrixaccordingtotheexperimentaldesign.Inordertoprocessa
8、ndanalyzesuchnaturalisticbraindata,theinter-subjectcorrelation(ISC)(Hassonetal.,2004)hasbeenwidelyused.ISCisbasedonthecorrelationbetweentwotemporalcoursesoftwoparticipantsgiventhesamespatiallocation,i.e.,thevoxelwiththes
9、amecoordinates.Recently,basedonacousticalfeatureextractionalgorithmsusedinmusicinformationretrieval,musicalfeaturesofthemusicstimulushavebeenextractedandcorrelatedtothetemporalcourseofeachvoxelofthefMRIdata(Allurietal.,2
10、012).DuetothelargeamountofvoxelsinfMRIdata,thenum-berofmultiplecomparisonsinsuchcorrelationanalysesislargeaswell.Therefore,somestatisticalmethodsaretypicallyusedtoavoidthefalsealarm.Onestraightforwardmethodistoreducethen
11、umberoftimesofcorrelations.Forexample,whenindependentcomponentanalysis(ICA)isappliedtodecomposefMRI(McKeownetal.,1998),thenumberofICAcomponents(usuallylessthanhundreds)ismuchsmallerthanthenumberofvoxels(hundredsofthousan
12、ds).Thedatadrivendataprocessingmethods,likeICA,havebeenusedtoprocessnaturalisticbraindata(Malinenetal.,2007;Ylipaavalniemietal.,2009)andthesimilaritybetweenthetemporalcoursesofthestimulusandthetemporalcoursesofICAcompone
13、nts(i.e.,spatialmaps)wasexamined.We findthatsomekeyissuesinapplyingICAtodecomposenaturalisticbraindatahavenotbeenwelladdressedyet.Thisstudyisdevotedtoanalyzingeverystepfortheapplicationofthisadvancedmethod.ForICA,theFas
14、tICAalgorithm(Hyvärinen,1999)wasused.Since1998(McKeownetal.,1998)ICAhasbeenextensivelyusedforthefMRIdataprocessing.Fordifferentdefinitionsofsamplesandvariablesinthelineartransformmodel,theapplicationofICAcanbedivide
15、dintotemporalICAandspatialICA(McKeownetal.,1998;Erhardtetal.,2010;Calhounetal.,2001;Huetal.,2005;Leeetal.,2011).Intheformer,anindependentcomponentisatem-poralcourse.Forthelatter,anindependentcomponentisavoxelseries,which
16、canbeassembledintoaspatialmapoffMRI.GiventhetypicaldimensionsoffMRIdatasets,thespatialICAisusuallypre-ferredbothfortheplausibilityoftheunderlyingneurophysiologicalmodelandforcomputationalrequirements.Hence,thespatialICAi
17、schosenforthefMRIdataanalysisinthisstudy.Hereinafter,whenICAismentioned,itisreferredtospatialICA.ICAcanbefurtherdividedintoindividualICAforanindi-vidualdataset(e.g.,includingoneparticipant’sdata)andgroupICAfortheconcaten
18、ateddataset(e.g.,includingmultiplepar-ticipants’data)(Calhounetal.,2009).GroupICAcanbeevencategorizedasthetemporalconcatenationapproach(e.g.,multi-pleparticipants’dataareconcatenatedinthetimedomain)andthespatialone(e.g.,
19、multipleparticipants’dataareconcatenatedinthespatialdomain)(Calhounetal.,2009).Thetemporalandspatialapproachesallowexaminingindividualtemporalcoursesandindividualspatialmaps,respectively,andtheyprovidecom-monspatialmapsa
20、ndcommontemporalcoursesovermultipleparticipants,respectively.Actually,groupICArequiresadditionalassumptionsbesidesthoseneededbyindividualICA(Congetal.,2013).ItisunknownwhetherfMRIdataduringreal-worldexpe-riencescanmeetth
21、eadditionalassumptions.Consequently,bothindividualICAandgroupICAareappliedtodecomposethefMRIdataheretoexaminewhethersimilarfindingscanbeobtainedbybothmethods.NomatterwhichmeansofICAisapplied,itisverycriti-caltodeterminet
22、henumberofextractedcomponents.Modelorderselection(MOS)hasbeenappliedforthispurpose(Lietal.,2007)andtheinformationtheorybasedMOSalgorithmsareoftenused,forexample,Akaike’sinformationcriterion(AIC)(Akaike,1974),MinimumDista
23、nceLength(MDL)(Rissanen,1978),andKullback–Leiblerinformationcriterion(KIC)(Cavanaugh,1999).ThistypeofMOSalgorithmsassumesthedataareindependentlyandidenticallydistributedandthecollectedbraindatahavetoberesampledtosatisfyt
24、hisassumptionforMOS(Lietal.,2007).Inthisstudy,weexamineanotherrecentlydevelopedalgorithmcalledSORTE(Heetal.,2010)forMOSoffMRIdata.SORTEisveryeffi-cientinthecomputinganddoesnotrequiretheresamplingprocess(Heetal.,2010).Alt
25、houghMOShasbeenextensivelyusedforfMRIdata,therearefewexplicitmethodstovalidatewhethertheesti-mationofMOSisaccurateornotfortherealfMRIdata.Recently,asimulationstudyhasshownthatMOScannotpreciselyestimatethenumberofsourcesi
26、nthelineartransformmodelwhensignal-noise-ratio(SNR)islow(e.g.,lessthan0dB),andthatwhenSNRislowSORTEandMDLtendtooverestimateandunderestimatethetruenumberofsources,respectively(Congetal.,2012).Inthisstudy,SORTE,AIC,MDLandK
27、ICareperformedontheconvention-allypreprocessedfMRIdataandfurtherpreprocessed(byadigitalfilter)fMRIdatatoexaminetheirperformanceinestimatingthenumberofsourcesinfMRIdataofindividualparticipants.ForindividualICA,clusteringt
28、heextractedICAcomponentsoffMRIdataisusuallyappliedtofindthecommoncomponentsacrossdifferentparticipants,andthesimilaritymatrixbasedhierarchicalclusteringhasbeenoftenused(Calhounetal.,2009;Espositoetal.,2005).ThenumberofIC
29、Acomponents(n)isalwaysmuchsmallerthanthenumberofvoxels(p).InfMRIdata,pcanbehundredsofthousands.Fortheveryhigh-dimensionaldata,dimensionreduc-tiontendstobeperformedbeforemachinelearning,likeclusteringandclassification.Int
30、hisstudy,arecentlydevelopeddimensionreductionmethodcalleddiffusionmap(DM)(CoifmanandLafon,2006)isappliedtoreducethedimensionofthedatatobeclustered(i.e.,thenICAcomponentshere)frompto2,andthen,thedegreeofclosenessofthenICA
31、componentscanbevisualizedbythescatterplotofthetwodimensionaldata.Furthermore,thespectralclus-tering(Nadleretal.,2006)isusedtofindthecommoncomponentsacrossmultipleparticipantsinthisstudy.ForgroupICA,thetemporalconcatenati
32、onseemstooutperformthespatialconcatenation(Calhounetal.,2009).Indeed,thiscon-clusionisbasedongroupICAforfMRIdatamostlyintheblockorevent-relateddesigns.ItisunknownwhethertheconclusionisvalidforthefMRIdataduringreal-worlde
33、xperiences.Therefore,bothapproachesaretriedtodecomposethefMRIhere.Inordertoaddresstheissuesmentionedabove,fMRIdataofelevenmusiciansinafree-listeningexperiment(Allurietal.,2012)areusedinthisstudy.2.Method2.1.Datadescripti
34、on2.1.1.fMRIElevenhealthyparticipants(withnoneurological,hearingorpsychologicalproblems)withformalmusicaltrainingparticipatedinthestudy(meanage:23.2±3.7SD;5females).TheparticipantswerescannedwithfMRIwhilelisteningto
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)學(xué)外文翻譯--利用獨(dú)立分量分析對(duì)自然連續(xù)音樂(lè)刺激下功能性磁共振(fmri)分解中關(guān)鍵性問(wèn)題的研究
- 醫(yī)學(xué)外文翻譯--利用獨(dú)立分量分析對(duì)自然連續(xù)音樂(lè)刺激下功能性磁共振(fmri)分解中關(guān)鍵性問(wèn)題的研究(譯文)
- 腦卒中康復(fù)治療及功能性核磁共振(FMRI)的臨床研究.pdf
- 復(fù)雜對(duì)指與功能性電刺激下正常與受損脊髓的功能核磁共振研究.pdf
- 胎兒功能性磁共振成像研究.pdf
- 針對(duì)異形幕墻設(shè)計(jì)中的關(guān)鍵性問(wèn)題分析
- 牙髓冷刺激痛及牙痛期待的功能性磁共振成像研究.pdf
- 公路工程施工中的關(guān)鍵性問(wèn)題分析
- 基于建筑節(jié)能監(jiān)理中的關(guān)鍵性問(wèn)題分析
- 村土地利用規(guī)劃編制關(guān)鍵性問(wèn)題分析
- 村土地利用規(guī)劃編制關(guān)鍵性問(wèn)題分析
- 移動(dòng)IP網(wǎng)絡(luò)中關(guān)鍵性問(wèn)題的研究.pdf
- 村土地利用規(guī)劃編制關(guān)鍵性問(wèn)題分析
- 村土地利用規(guī)劃編制關(guān)鍵性問(wèn)題分析
- 村土地利用規(guī)劃編制關(guān)鍵性問(wèn)題分析
- 村土地利用規(guī)劃編制關(guān)鍵性問(wèn)題分析
- 面部觸覺(jué)及熱刺激痛的功能性核磁共振成像研究.pdf
- 橋梁健康監(jiān)測(cè)中的關(guān)鍵性問(wèn)題研究.pdf
- 關(guān)于建筑電氣安裝中的關(guān)鍵性問(wèn)題探析
- 針灸腦反應(yīng)的功能性磁共振成像研究.pdf
評(píng)論
0/150
提交評(píng)論