醫(yī)學(xué)外文翻譯--利用獨(dú)立分量分析對(duì)自然連續(xù)音樂(lè)刺激下功能性磁共振(fmri)分解中關(guān)鍵性問(wèn)題的研究(英文)_第1頁(yè)
已閱讀1頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and shar

2、ing with colleagues.Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.In most cases authors are permitted to

3、 post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encour

4、aged to visit:http://www.elsevier.com/authorsrightsAuthor's personal copyF.Congetal./JournalofNeuroscienceMethods223 (2014) 74–84 75fMRIdataincludetheblockdesignandtheevent-relateddesign(Panetal.,2011).Fortheblockdes

5、ign,thecontrastoffMRIdatabetweenthestimulusonsetandthestimulusoffsetisanalyzed.Fortheevent-relatedone,thedesignmatrixcanbeusedforregressionduringwhichthetemporalcourseofavoxelandthecorrespondingspatialmaparelearned.Witht

6、hedevelopmentoffMRIresearch,somestudiesevenreportedfMRIdataobtainedduringarealisticexperiencewherethestimulusisnaturalistic,continuousandlong(Allurietal.,2012;Hassonetal.,2004;HaynesandRees,2006;Kauppietal.,2010;Kayetal.

7、,2008;SpiersandMaguire,2007).Suchnaturalisticbraindatacanprovidemuchricherbrainresponsesforresearchandittendstobedifficulttodirectlyobtaintheprecisecontrastordesignmatrixaccordingtotheexperimentaldesign.Inordertoprocessa

8、ndanalyzesuchnaturalisticbraindata,theinter-subjectcorrelation(ISC)(Hassonetal.,2004)hasbeenwidelyused.ISCisbasedonthecorrelationbetweentwotemporalcoursesoftwoparticipantsgiventhesamespatiallocation,i.e.,thevoxelwiththes

9、amecoordinates.Recently,basedonacousticalfeatureextractionalgorithmsusedinmusicinformationretrieval,musicalfeaturesofthemusicstimulushavebeenextractedandcorrelatedtothetemporalcourseofeachvoxelofthefMRIdata(Allurietal.,2

10、012).DuetothelargeamountofvoxelsinfMRIdata,thenum-berofmultiplecomparisonsinsuchcorrelationanalysesislargeaswell.Therefore,somestatisticalmethodsaretypicallyusedtoavoidthefalsealarm.Onestraightforwardmethodistoreducethen

11、umberoftimesofcorrelations.Forexample,whenindependentcomponentanalysis(ICA)isappliedtodecomposefMRI(McKeownetal.,1998),thenumberofICAcomponents(usuallylessthanhundreds)ismuchsmallerthanthenumberofvoxels(hundredsofthousan

12、ds).Thedatadrivendataprocessingmethods,likeICA,havebeenusedtoprocessnaturalisticbraindata(Malinenetal.,2007;Ylipaavalniemietal.,2009)andthesimilaritybetweenthetemporalcoursesofthestimulusandthetemporalcoursesofICAcompone

13、nts(i.e.,spatialmaps)wasexamined.We findthatsomekeyissuesinapplyingICAtodecomposenaturalisticbraindatahavenotbeenwelladdressedyet.Thisstudyisdevotedtoanalyzingeverystepfortheapplicationofthisadvancedmethod.ForICA,theFas

14、tICAalgorithm(Hyvärinen,1999)wasused.Since1998(McKeownetal.,1998)ICAhasbeenextensivelyusedforthefMRIdataprocessing.Fordifferentdefinitionsofsamplesandvariablesinthelineartransformmodel,theapplicationofICAcanbedivide

15、dintotemporalICAandspatialICA(McKeownetal.,1998;Erhardtetal.,2010;Calhounetal.,2001;Huetal.,2005;Leeetal.,2011).Intheformer,anindependentcomponentisatem-poralcourse.Forthelatter,anindependentcomponentisavoxelseries,which

16、canbeassembledintoaspatialmapoffMRI.GiventhetypicaldimensionsoffMRIdatasets,thespatialICAisusuallypre-ferredbothfortheplausibilityoftheunderlyingneurophysiologicalmodelandforcomputationalrequirements.Hence,thespatialICAi

17、schosenforthefMRIdataanalysisinthisstudy.Hereinafter,whenICAismentioned,itisreferredtospatialICA.ICAcanbefurtherdividedintoindividualICAforanindi-vidualdataset(e.g.,includingoneparticipant’sdata)andgroupICAfortheconcaten

18、ateddataset(e.g.,includingmultiplepar-ticipants’data)(Calhounetal.,2009).GroupICAcanbeevencategorizedasthetemporalconcatenationapproach(e.g.,multi-pleparticipants’dataareconcatenatedinthetimedomain)andthespatialone(e.g.,

19、multipleparticipants’dataareconcatenatedinthespatialdomain)(Calhounetal.,2009).Thetemporalandspatialapproachesallowexaminingindividualtemporalcoursesandindividualspatialmaps,respectively,andtheyprovidecom-monspatialmapsa

20、ndcommontemporalcoursesovermultipleparticipants,respectively.Actually,groupICArequiresadditionalassumptionsbesidesthoseneededbyindividualICA(Congetal.,2013).ItisunknownwhetherfMRIdataduringreal-worldexpe-riencescanmeetth

21、eadditionalassumptions.Consequently,bothindividualICAandgroupICAareappliedtodecomposethefMRIdataheretoexaminewhethersimilarfindingscanbeobtainedbybothmethods.NomatterwhichmeansofICAisapplied,itisverycriti-caltodeterminet

22、henumberofextractedcomponents.Modelorderselection(MOS)hasbeenappliedforthispurpose(Lietal.,2007)andtheinformationtheorybasedMOSalgorithmsareoftenused,forexample,Akaike’sinformationcriterion(AIC)(Akaike,1974),MinimumDista

23、nceLength(MDL)(Rissanen,1978),andKullback–Leiblerinformationcriterion(KIC)(Cavanaugh,1999).ThistypeofMOSalgorithmsassumesthedataareindependentlyandidenticallydistributedandthecollectedbraindatahavetoberesampledtosatisfyt

24、hisassumptionforMOS(Lietal.,2007).Inthisstudy,weexamineanotherrecentlydevelopedalgorithmcalledSORTE(Heetal.,2010)forMOSoffMRIdata.SORTEisveryeffi-cientinthecomputinganddoesnotrequiretheresamplingprocess(Heetal.,2010).Alt

25、houghMOShasbeenextensivelyusedforfMRIdata,therearefewexplicitmethodstovalidatewhethertheesti-mationofMOSisaccurateornotfortherealfMRIdata.Recently,asimulationstudyhasshownthatMOScannotpreciselyestimatethenumberofsourcesi

26、nthelineartransformmodelwhensignal-noise-ratio(SNR)islow(e.g.,lessthan0dB),andthatwhenSNRislowSORTEandMDLtendtooverestimateandunderestimatethetruenumberofsources,respectively(Congetal.,2012).Inthisstudy,SORTE,AIC,MDLandK

27、ICareperformedontheconvention-allypreprocessedfMRIdataandfurtherpreprocessed(byadigitalfilter)fMRIdatatoexaminetheirperformanceinestimatingthenumberofsourcesinfMRIdataofindividualparticipants.ForindividualICA,clusteringt

28、heextractedICAcomponentsoffMRIdataisusuallyappliedtofindthecommoncomponentsacrossdifferentparticipants,andthesimilaritymatrixbasedhierarchicalclusteringhasbeenoftenused(Calhounetal.,2009;Espositoetal.,2005).ThenumberofIC

29、Acomponents(n)isalwaysmuchsmallerthanthenumberofvoxels(p).InfMRIdata,pcanbehundredsofthousands.Fortheveryhigh-dimensionaldata,dimensionreduc-tiontendstobeperformedbeforemachinelearning,likeclusteringandclassification.Int

30、hisstudy,arecentlydevelopeddimensionreductionmethodcalleddiffusionmap(DM)(CoifmanandLafon,2006)isappliedtoreducethedimensionofthedatatobeclustered(i.e.,thenICAcomponentshere)frompto2,andthen,thedegreeofclosenessofthenICA

31、componentscanbevisualizedbythescatterplotofthetwodimensionaldata.Furthermore,thespectralclus-tering(Nadleretal.,2006)isusedtofindthecommoncomponentsacrossmultipleparticipantsinthisstudy.ForgroupICA,thetemporalconcatenati

32、onseemstooutperformthespatialconcatenation(Calhounetal.,2009).Indeed,thiscon-clusionisbasedongroupICAforfMRIdatamostlyintheblockorevent-relateddesigns.ItisunknownwhethertheconclusionisvalidforthefMRIdataduringreal-worlde

33、xperiences.Therefore,bothapproachesaretriedtodecomposethefMRIhere.Inordertoaddresstheissuesmentionedabove,fMRIdataofelevenmusiciansinafree-listeningexperiment(Allurietal.,2012)areusedinthisstudy.2.Method2.1.Datadescripti

34、on2.1.1.fMRIElevenhealthyparticipants(withnoneurological,hearingorpsychologicalproblems)withformalmusicaltrainingparticipatedinthestudy(meanage:23.2±3.7SD;5females).TheparticipantswerescannedwithfMRIwhilelisteningto

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論