版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、AppliedSoftComputing13(2013)2683–2691ContentslistsavailableatSciVerseScienceDirectAppliedSoftComputingjournalhomepage:www.elsevier.com/locate/asocWaveletbasedNeuro-Detectorforlowfrequenciesofvibrationsignalsinelectric mo
2、torsDuyguBayram ?, SerhatS ¸ ekerIstanbulTechnicalUniversity,ElectricalEngineeringDepartment,34469Istanbul,Turkeya r t i c l e i nf oArticlehistory:Received23September2010Receivedinrevisedform1September2012
3、Accepted24November2012Availableonline11December2012Keywords:AutoAssociativeNeuralNetworkMultiResolutionWaveletTransformElectricmotorAgingVibrationBearingdamageab s t r a c tThis study presentsa Waveletbased Neur
4、o-Detectorapproachemployedto detect the aging indicationsofan electricmotor. Analysisofthe aging indications,which can be seen in the low frequencyregion,isperformedusing vibrationsignals.Morespecifically
5、,two vibrationsignalsare observedfor healthyandfaulty (aged)cases whichare measuredfrom the sameelectricmotor.Multi ResolutionWaveletAnalysis(MRWA)is appliedin order to obtain low and highfrequencybands of
6、 the vibrationsignals.Thusfor detectingthe aging propertiesin the spectra, the PowerSpectralDensity (PSD) of the subbandforthe healthycase is used to train an Auto AssociativeNeural Network(AANN).The
7、PSD amplitudes,whichare computedfor the faulty case, are appliedto input nodesof the trained networkfor the re-callingprocessof AANN. Consequently,the simulationresults show that some spectralproperti
8、esdefinedin lowfrequencyregion are determinedthrough the error responseof AANN. Hence,somespecific frequenciesofthe bearingdamagerelated to the aging processare detectedand identified.©2012ElsevierB.V.
9、 All rightsreserved.1.IntroductionInductionmotoristhemostpopularelectricmotortypebecauseofitssimpleconstructionandlonglifewithoutmaintenanceneed.Intheliterature,therearelotsofstudiesrelatedtothedevelopmentandresearchofi
10、nductionmotors.Theperformancestudiesaregen-erallybasedonelectrical,mechanicalandthermalparameterslikevoltage,current,torque,temperature,noise,etc.Theseparametersreflectveryimportanthintsabouttheperformanceandworkingcondi
11、tionoftheelectricmotors.Theprognosticanddiagnosticstudiesoninductionmotorsareanotherimportantaspectinprovidingtheoperationalcontinuityoftheindustrialprocess[1–3].Andalso,conditionmonitoringstud-iesgainimportanceinearlyde
12、tectionoffailureinsomecriticalsystemslikenuclearpowerplantsandpetrochemicalprocesses[4,5].Inthissense,therearesomanystudiesaimingfindingoutthesourcesofdegradationsoninductionmotors.Mechanicalfailuresrelatedtothemanufactu
13、ringhavethegreatestmajorityintermsofAbbreviations:MRWA,MultiResolutionWaveletAnalysis;PSD,PowerSpectralDensity;AANN,AutoAssociativeNeuralNetwork;DWT,DiscreteWaveletTrans-form;BPF,BallPassFrequency;EDM,ElectricalDischarge
14、Machining. ? Correspondingauthorat:IstanbulTechnicalUniversity,ElectricalandElectron-icsFaculty,ElectricalEngineeringDepartment,34469Maslak,Istanbul,Turkey.Tel.:+902122856736;fax:+902122856700.E-mailaddresses:bayramd@itu
15、.edu.tr (D.Bayram),sekers@itu.edu.tr(S.S ¸ eker).theencounteredfaults[1]. Thesearerespectivelybearing,balanceandalignmentdefects[6–9].Inthismanner,somesignalprocessingmethodsareusedtoextractthehiddenhintsandinforma
16、tionofthefaultsignatures[10–14]. Vibrationsignalsusuallyshowcrucialindicationsaboutagingoftheelectricmotorwhereaselectricalsignalscarryhintsonly.Becauseofthis,vibrationsignalsareusedinvariousstudiesintheliterature[13–22]
17、. Forexample,theycanbeusedtodefineatransferfunctionofagingprocessinelectricmotor[15].Intheliterature,somestatisticaltechniquesareappliedtothevibrationsignalsinordertodetectagingeffectsandhenceitisfiguredoutthatsomestati
18、sticalparameterschangebyaging[16].Andalso,itispointedoutsomecorrelationsbetweenvibration’sspectraldensityandagingdefects[17–20]. Motorvibrationsignalsarealsousedtoextractsomefeaturesofbearingagingbywavelettransforms.Fro
19、mthispointofview,majoreffectsofthebearingdamagearedetectedinthehighfrequencyband(between2and4kHz)[21,22].Theaimofthisstudyistoanalyzetheelectricmotorvibrationsignal’slowfrequencybandusingawaveletbasedneuro-detectorapproa
20、ch,inordertoextractitsagingeffectsanddefects.However,thereisnoencounteredstudywhichobservestheroleofthelowfrequencybandintheinvestigationoftheagingeffects.Thisisthemostimportantcontributionofthisstudyintermsofextractiono
21、ftheagingeffects,aswellasusedmethodology.Anexperimentalsetupisrealizedtoobtainthevibrationsignaltogetherwithelectricalsignals.Intheexperiment,thevibrationsignalsofa5HPelectricmotorarerecordedbytwoaccelerometers.Inorderto
22、arrangethedata,asignalconditionerisusedbeforestoringthedataonaregular1568-4946/$–seefrontmatter©2012ElsevierB.V.Allrightsreserved.http://dx.doi.org/10.1016/j.asoc.2012.11.019D.Bayram,S.S ¸ eker/AppliedSoftCompu
23、ting13(2013)2683–26912685Fig.2.MRWAatnthlevel.processtheoutputsofthehighfrequencyfiltersarenamedasdetailsDj,theoutputsofthelowfrequencyfiltersarenamedasapproximationsAj.Theschematicinterpretationofthen-levelmultiresoluti
24、onwaveletanalysisisshowninFig.2,herejisthedecompo-sitionlevel.ThesignalrepresentationcanbegivenasinEq.(4).s(t)=D1 +D2 +D3 +···+Dj +Aj (4)2.3.AutoAssociativeNeuralNetworksAutoAssociativeNeuralNetwork(AANN)i
25、safeedforward,fullyconnected,multilayerperceptronnetwork.ThedimensionsoftheinputandoutputlayersareequaltoeachotherintheAANNtopol-ogy.Also,thenumberofthehiddennodesforonehiddenlayerislessthanthenumberofinputandoutputnodes
26、.HencehiddenlayeroftheAANNiscalledas“bottleneck”,whichcompressestheinformationtoobtainacorrelationmodel[23].Sigmoidfunctionsareusedtoprovidethenonlinearityonthehiddenlayer.Theneedofnonlinearfunctionisindispensablebecause
27、AutoAssociativeNeuralNetworkisexpectedtoproduceitsinputattheoutputlayer[30–33].Atthetrainingprocess,thehiddenlayerappliesanencodingbycompressingtheinformationappliedtothenetworkastheinputsignal.Thenthenetworkdecodesbydec
28、ompressingthecarriedinformationtoproducethetargetsignal,whichisthesamewiththeinputsignal.ThestructureofAutoAssociativeNeuralNetworkleadstheusageareaofthenetworktodetectthefailurebycomparingtherealtimeoutputandtheoutputof
29、thenetwork.Forthisreason,AutoAssociativeNeuralNetworkisusedinsensorvalidation,detectionandmonitoringapplications[23,34,35].ThebasictopologyofanAutoAssociativeNeuralNetworkcanbegivenasshowninFig.3.Fig.3.Representativetopo
30、logyoftheAANN.AsatrainingalgorithmoftheAANN,BackPropagationalgo-rithmcanbeusedwhichisawell-knownalgorithmintherelatedliterature[36].3.ExperimentalstudyandmeasurementsystemAnexperimentalsetupisdesignedtoacquirethevibratio
31、nsig-nals.Twotypesofdataarecollectedusingthesetup,thesearevibrationdatainhealthycaseandthevibrationdatainfaultycase.Duringthisagingprocesstwotechniqueshavebeenexecutedonthemotor,theseareElectricalDischargeMachining(EDM)a
32、ndtheThermalAging,respectively.Asanaturalresultofthehighspeedoperationofelectricmotor,unexpectedshaftvoltageisinduced.Theshaftvoltagelevelincre-mentcancausebreakingdownofthegreasefilmbetweentherollingelementsandinner/out
33、erracesofthebearing.Hence,ran-domarcingoccursandthendischargecurrentsstarttoflowthroughtherollingelements.Asaresultofthisdischargemode,bearingflutingcomesinexistenceandthenbearingfaultsareencountered.TheElectricalDischar
34、geMachining(EDM)isasimulationofthisnaturalprocess.Forthispurpose,anexternalshaftvoltageandcur-rentisappliedtothemotorfor30minutesat30VACand27A.Theappliedexternalvoltageandcurrentcausethedischargesandbearingflutings.Alsot
35、hechemicalandthermalagingstepsareappliedtothemotorinordertoacceleratetheagingaftertheEDM.Chemicalandthermaleffectscausetothecorrosionandthermaldamageofthematerial.Intermsofthechemicalandthermalapplication,themotorisimmer
36、sedintothewatertankandputintotheovenat140 ?C.Inthissensetherearethreeaspectsoftheagingpro-cess.Theseareelectrical,chemicalandthermal.Thisprocedureisappliedforseventimes(7cycles)duringtheexperiment.Aftereachagingcycle,the
37、motorwasseparatedfromtheconnectionplatformbeforethechemicalandthermalapplication.However,foreachcycle,itwasfixedontheplatformagain,accordingtotheacceptablevibrationlevel.ThedetailsoftheexperimentcanbefoundinthePhDthesiso
38、fDr.A.S.ErbayandrelevantstudieswerementionedinthetextbygivenRefs.[37–39].Afterthesesteps,thevibrationdataaretakenbytheaccelero-metersplacedonthemotoraswellasthemotorcurrent/voltageinformationandthermaldata.However,electr
39、icalsignalsarewell-knowninformationsourcesfortrackingthemotorconditionintheliterature,thisinformationisfocusedonlinefrequency(fundamen-talfrequency)anditssidebands.Thermalvariationisalsoveryslowtoextractthemechanicaleffe
40、cts.Thereforethebestoneisthevibrationforthemechanicalandstructuralfaults.Forthisreason,inthestudyvibrationdataareused[37–39].Motortypeusedintheexperimentalstudyisaninductionmotorof5HP,three-phase,four-poles,designedfor60
41、Hz sup-plyfrequencyandwiththenominalspeed1742rpm(rotationperminute).InFig.4measurementanddataacquisitionsystemcanbeseen.Twoidenticalaccelerometersareusedtorecordthevibrationmeasurementsattheprocessend.Therefore,sensor#2
42、isonlyusedinthisstudy.Thesamplingfrequencyoftherecordeddatais12kHz.Besides,inordertoavoidfromthehighfrequencynoiseinterferedintherecordeddata,anantialiasingfilter,withcutofffrequencyat4kHz,isused.4.Applicationtovibration
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯-- 基于小波的神經(jīng)探測(cè)器分析電機(jī)的低頻振動(dòng)信號(hào) (英文).pdf
- 外文翻譯-- 基于小波的神經(jīng)探測(cè)器分析電機(jī)的低頻振動(dòng)信號(hào)
- 外文翻譯-- 基于小波的神經(jīng)探測(cè)器分析電機(jī)的低頻振動(dòng)信號(hào) (英文).pdf
- 外文翻譯-- 基于小波的神經(jīng)探測(cè)器分析電機(jī)的低頻振動(dòng)信號(hào)
- 外文翻譯-- 基于小波的神經(jīng)探測(cè)器分析電機(jī)的低頻振動(dòng)信號(hào) (譯文)
- 外文翻譯-- 基于小波的神經(jīng)探測(cè)器分析電機(jī)的低頻振動(dòng)信號(hào) (譯文).doc
- 外文翻譯-- 基于小波的神經(jīng)探測(cè)器分析電機(jī)的低頻振動(dòng)信號(hào) (譯文).doc
- 毫米波探測(cè)器的信號(hào)分析與處理器設(shè)計(jì).pdf
- 外文翻譯---數(shù)控機(jī)床上探測(cè)器應(yīng)變的工具(英文)
- 被動(dòng)毫米波探測(cè)器的信號(hào)獲取、分析及目標(biāo)辨識(shí).pdf
- 基于小波的某水下運(yùn)載器振動(dòng)信號(hào)的分析研究.pdf
- 基于FPGA的毫米波探測(cè)器信號(hào)處理系統(tǒng)設(shè)計(jì).pdf
- 基于小波變換的齒輪振動(dòng)信號(hào)分析方法研究.pdf
- 毫米波探測(cè)器信號(hào)處理系統(tǒng)設(shè)計(jì).pdf
- 火災(zāi)探測(cè)器狀態(tài)信號(hào)傳輸?shù)姆治雠c設(shè)計(jì)
- 被動(dòng)毫米波探測(cè)器的信號(hào)處理與目標(biāo)識(shí)別.pdf
- 基于FPGA的雙探測(cè)器偏振OCT信號(hào)處理.pdf
- 基于神經(jīng)網(wǎng)絡(luò)的復(fù)合探測(cè)器的研究.pdf
- 外文翻譯---數(shù)控機(jī)床上探測(cè)器應(yīng)變的工具
- 外文翻譯---數(shù)控機(jī)床上探測(cè)器應(yīng)變的工具
評(píng)論
0/150
提交評(píng)論