已閱讀1頁,還剩43頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、本論文主要研究如下擾動(dòng)KdV方程的初值問題:{ut+6uux+uxxx=εR(u),u(x,0)=asech2(γx),a=2γ2u,ux,uxx……→0(|x|→+∞)利用多重尺度法得到R(u)=δ(εt)u,R(u)=-△(εt)uxxx兩種不同的擾動(dòng)情況下的解析近似解的具體形式;然后考慮更一般情況下的初值問題即{ut+6uux+uxxx=εR(u),u(x,0)=u0(x)∈C∞(-∞,+∞),u,ux,uxx……→0(|x|→+
2、∞)的孤立波解在R(u)=δ(εt)u,,R(u)=-△(εt)uxxx兩種不同的擾動(dòng)情況下的解的性態(tài),分別構(gòu)造出不同擾動(dòng)項(xiàng)KdV方程的擾動(dòng)孤立波解滿足的能量關(guān)系式,并利用能量分析方法給出了擾動(dòng)孤立波解的界的先驗(yàn)估計(jì),得到如下結(jié)論: (1)R(u)=δ(εt)u,,δ(s)∈C[0,+∞,δ(0)=0時(shí),解在-∞<x<+∞,0≤εt≤T內(nèi)一致有界。進(jìn)一步地,若∫+∞0|δ(s)|ds收斂,則解在-∞<x<+∞,t≥0時(shí)一致有界。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- KdV方程和修正KdV方程的雙Wronskian解.pdf
- 修正KdV方程的精確解.pdf
- 帶有微擾動(dòng)的Schrodinger方程的解析解和數(shù)值解的比較.pdf
- 三類廣義KdV方程的行波解.pdf
- 雙曲函數(shù)展開法和廣義KDV方程及KDV方程組的精確解.pdf
- 非線性電報(bào)方程解的漸近性質(zhì)及廣義KdV方程的行波解.pdf
- 矩陣方程解的擾動(dòng)分析.pdf
- BBM和擾動(dòng)KdV方程的一些動(dòng)力學(xué)性質(zhì).pdf
- 廣義Hirota-Satsuma型耦合KdV方程的精確解.pdf
- 廣義耦合KdV方程的達(dá)布變換及其精確解.pdf
- KdV方程的新解.pdf
- 一個(gè)耦合KdV方程的Darboux變換及其精確解.pdf
- 可積耦合KdV方程和GKP-BBM方程的顯式行波解.pdf
- 發(fā)展方程數(shù)值解.pdf
- KP和廣義H-S耦合KdV方程的精確解.pdf
- 離散KdV方程的新解.pdf
- 耦合的修正的變系數(shù)kdv方程的非線性波解
- 同時(shí)滿足KdV方程兩個(gè)守恒律的數(shù)值算法.pdf
- 耦合KdV(3,α=β)方程與CH2方程類的行波解分支.pdf
- 40880.具有時(shí)滯的kdv方程行波解的存在性
評論
0/150
提交評論