關(guān)于隨機(jī)混合自旋鏈的量子蒙特卡羅研究.pdf_第1頁
已閱讀1頁,還剩56頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、在過去的幾十年中,具有隨機(jī)耦合強(qiáng)度的低維反鐵磁模型一直是凝聚態(tài)物理研究中的大家感興趣的課題。許多重要的研究該系統(tǒng)的理論方法,包括解析方法或者數(shù)值方法應(yīng)運(yùn)而生,其中包括實(shí)空間重整化過程,量子蒙特卡羅模擬和密度矩陣重整化群等。雖然應(yīng)用這些方法成功研究并很好解釋了隨機(jī)耦合強(qiáng)度的純反鐵磁海森堡鏈的新的物理特性,但是關(guān)于混合自旋鏈以及隨機(jī)耦合強(qiáng)度同時(shí)存在給這個(gè)系統(tǒng)帶來的物理性質(zhì)卻被很少研究。同時(shí),近年來很多準(zhǔn)一維的混合自旋材料被合成,所以研究隨機(jī)

2、耦合強(qiáng)度的混合自旋鏈在理論和實(shí)驗(yàn)上都有巨大的意義。本論文將應(yīng)用量子蒙特卡羅模擬方法計(jì)算具有隨機(jī)耦合強(qiáng)度的混合自旋鏈的能隙,序參數(shù)等物理量以及它們的熱力學(xué)性質(zhì)。通過這些計(jì)算,我們發(fā)現(xiàn)在耦合強(qiáng)度不隨機(jī)的情況下,通過改變最近鄰耦合強(qiáng)度的比例,在臨界點(diǎn)處系統(tǒng)會(huì)在兩個(gè)價(jià)鍵態(tài)相間發(fā)生量子相變;而在耦合強(qiáng)度隨機(jī)分布的情況下,在原先系統(tǒng)的臨界點(diǎn)附近還將產(chǎn)生量子Griffiths態(tài)。
   論文第一章我們首先簡要敘述了一維反鐵磁自旋系統(tǒng)的物理性質(zhì)

3、以及量子相變的背景和特點(diǎn),回顧了一些實(shí)驗(yàn)、解析和數(shù)值計(jì)算結(jié)果。之后我們還介紹了具有隨機(jī)耦合強(qiáng)度的系統(tǒng)的一些共同的特點(diǎn)。
   論文第二章我們將介紹在模擬量子自旋系統(tǒng)中廣泛使用的世界線量子蒙特卡洛方法,并著重回顧和分析在更新組態(tài)算法的變化和發(fā)展。從Suzuki-Trotter變換開始,我們引入世界線量子蒙特卡洛方法,并指出局域更新組態(tài)算法的缺點(diǎn)。之后我們?cè)敿?xì)介紹了克服和解決這些缺點(diǎn)的新的算法:簇團(tuán)更新組態(tài)算法的分立時(shí)間版本和連續(xù)時(shí)

4、間版本。通過展示應(yīng)用簇團(tuán)更新組態(tài)算法的worm算法解決高自旋系統(tǒng)的具體實(shí)現(xiàn),我們進(jìn)一步的指出簇團(tuán)更新組態(tài)的算法在計(jì)算高自旋系統(tǒng)或帶外場的系統(tǒng)時(shí)的不足。為了解決這些不足,我們又具體介紹了粗粒度更新組態(tài)的算法,還指出了該算法的其它優(yōu)點(diǎn)和更廣泛的應(yīng)用。
   論文第三章我們介紹和回顧具有隨機(jī)耦合強(qiáng)度的海森堡自旋系統(tǒng)的物理性質(zhì)。在大量的量子和經(jīng)典系統(tǒng)中,隨機(jī)性在量子或物理漲落中都起了主導(dǎo)作用。擴(kuò)展的實(shí)空間重整化過程關(guān)于自旋為1/2的海森

5、堡模型的計(jì)算結(jié)果表明具有鍵隨機(jī)分布的該模型轉(zhuǎn)變?yōu)閞andom-singlet相。對(duì)于二聚化的自旋為1/2的反鐵磁自旋模型,在隨機(jī)強(qiáng)度分布比較大的情況下,系統(tǒng)能隙消失,有限拓?fù)湫虻拇嬖谝约岸坛套孕P(guān)聯(lián)揭示了量子Griffiths相的存在。Hyman和Yang研究了自旋為1的隨機(jī)耦合強(qiáng)度的海森堡自旋系統(tǒng),他們的研究表明在隨機(jī)強(qiáng)度不斷增強(qiáng)的過程中,該系統(tǒng)會(huì)從Haldane相轉(zhuǎn)變成量子Griffiths相,再轉(zhuǎn)變?yōu)閞andom—singlet相

6、。
   論文第四章是本文最重要的部分。在這一章中我們研究了四周期的混合自旋鏈1-1-l/2—1/2中鍵隨機(jī)分布對(duì)原模型中量子臨界點(diǎn)的影響。在鍵隨機(jī)分布不存在的情況下,通過改變最近鄰耦合強(qiáng)度之間的比例,在臨界點(diǎn)處原模型會(huì)在不同的價(jià)鍵固態(tài)相間發(fā)生量子相變。而在鍵隨機(jī)分布的情況下,該模型仍然有臨界的奇點(diǎn),系統(tǒng)在臨界點(diǎn)上進(jìn)入random-singlet相,并且在臨界點(diǎn)周圍系統(tǒng)有附加的“Griffiths-McCoy”奇點(diǎn)。在這些奇點(diǎn)上

7、,系統(tǒng)能隙消失但具有有限的拓?fù)湫騾⒘?VBS序參量)。我們發(fā)現(xiàn)量子Griffiths相的區(qū)域隨著隨機(jī)強(qiáng)度的增加而變寬,系統(tǒng)在該相中具有明顯的動(dòng)力學(xué)各向異性,動(dòng)力學(xué)臨界指數(shù)z>1,并且系統(tǒng)在臨界點(diǎn)附近的行為由于在重整化群意義下relevant的隨機(jī)分布的強(qiáng)制二聚化作用下發(fā)生了改變。
   論文最后一章我們總結(jié)和討論了四周期的混合自旋鏈1-1-1/2-1/2鍵隨機(jī)分布模型的研究結(jié)果,同時(shí)指出了進(jìn)一步的研究方向,包括在臨界點(diǎn)附近的臨界

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論