平面偶應(yīng)力問題的辛求解方法.pdf_第1頁(yè)
已閱讀1頁(yè),還剩63頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、平面偶應(yīng)力理論雖然早在上世紀(jì)初就出現(xiàn)了,但是其分析求解一直沒有得到很好的解決.現(xiàn)有的求解手段主要采用數(shù)值方法-如有限元法.而能給出其解析解的只限于某些特殊的偶應(yīng)力問題.辛方法作為一種嶄新的理論求解體系已成功應(yīng)用于板、梁等彈性力學(xué)問題的求解,與經(jīng)典的彈性力學(xué)求解體系相比有著其獨(dú)特的優(yōu)越性.該文目的在于把這種解析方法應(yīng)用到平面偶應(yīng)力問題的求解.該文借助于Reissner板與平面偶應(yīng)力的模擬關(guān)系,在平面偶應(yīng)力問題的類Hellinger-Rei

2、ssner變分原理的基礎(chǔ)上,以應(yīng)力函數(shù)為原變量,部分應(yīng)變?yōu)槠鋵?duì)偶變量,推導(dǎo)出力法形式的平面偶應(yīng)力問題的Hamilton對(duì)偶方程組.于是把平面偶應(yīng)力問題引入到Hamilton體系,從而利用辛空間的分離變量和本征函數(shù)向量展開法獲得其解.該文討論了兩種典型邊界條件--對(duì)邊自由和對(duì)邊固支矩形域問題的解析求解.首先求解出由于用應(yīng)變代替位移作為基本變量而帶來(lái)的對(duì)邊自由矩形域問題的所有非齊次特解,這些解均是有特殊物理意義的解.然后,推導(dǎo)出這兩類邊界條

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論