簡介:ENGINEERINGSTRUCTURES332011911–919CONTENTSLISTSAVAILABLEATSCIENCEDIRECTENGINEERINGSTRUCTURESJOURNALHOMEPAGEWWWELSEVIERCOM/LOCATE/ENGSTRUCTAPPLICATIONOFTHECONTINUOUSWAVELETTRANSFORMONTHEFREEVIBRATIONSOFASTEEL–CONCRETECOMPOSITERAILWAYBRIDGEMAHIRüLKERKAUSTELL?,RAIDKAROUMITHEROYALINSTITUTEOFTECHNOLOGY,KTH,BRINELLV?GEN34,SE10044STOCKHOLM,SWEDENARTICLEINFOARTICLEHISTORYRECEIVED10JULY2010RECEIVEDINREVISEDFORM12NOVEMBER2010ACCEPTED1DECEMBER2010AVAILABLEONLINE15JANUARY2011KEYWORDSRAILWAYBRIDGESSTEEL–CONCRETECOMPOSITEBRIDGETRAININDUCEDVIBRATIONSCONTINUOUSWAVELETTRANSFORMSYSTEMIDENTIFICATIONABSTRACTINTHISARTICLE,THECONTINUOUSWAVELETTRANSFORMCWTISUSEDTOSTUDYTHEAMPLITUDEDEPENDENCYOFTHENATURALFREQUENCYANDTHEEQUIVALENTVISCOUSMODALDAMPINGRATIOOFTHEFIRSTVERTICALBENDINGMODEOFABALLASTED,SINGLESPAN,CONCRETE–STEELCOMPOSITERAILWAYBRIDGEITISSHOWNTHATFORTHEOBSERVEDRANGEOFACCELERATIONAMPLITUDES,ALINEARRELATIONEXISTSBETWEENBOTHTHENATURALFREQUENCYANDTHEEQUIVALENTVISCOUSMODALDAMPINGRATIOANDTHEAMPLITUDEOFVIBRATIONTHISRESULTWASOBTAINEDBYANANALYSISBASEDONTHECWTOFTHEFREEVIBRATIONSAFTERTHEPASSAGEOFANUMBEROFFREIGHTTRAINSTHENATURALFREQUENCYWASFOUNDTODECREASEWITHINCREASINGAMPLITUDEOFVIBRATIONANDTHECORRESPONDINGDAMPINGRATIOINCREASEDWITHINCREASINGAMPLITUDEOFVIBRATIONTHISMAY,GIVENTHATFURTHERRESEARCHEFFORTSHAVEBEENMADE,HAVEIMPLICATIONSONTHECHOICEOFDAMPINGRATIOSFORTHEORETICALSTUDIESAIMINGATUPGRADINGEXISTINGBRIDGESANDINTHEDESIGNOFNEWBRIDGESFORHIGHSPEEDTRAINSTHEANALYSISPROCEDUREISVALIDATEDBYMEANSOFANALTERNATIVEANALYSISTECHNIQUEUSINGTHELEASTSQUARESMETHODTOFITALINEAROSCILLATORTOCONSECUTIVE,WINDOWEDPARTSOFTHESTUDIEDSIGNALSINTHISPARTICULARCASE,THETWOANALYSISPROCEDURESPRODUCEESSENTIALLYTHESAMERESULT?2010ELSEVIERLTDALLRIGHTSRESERVED1BACKGROUNDTHEDYNAMICPROPERTIESOFRAILWAYBRIDGESAREKNOWNTODEPENDONARATHERLARGENUMBEROFPHENOMENATHESECONSISTOFSOIL–STRUCTUREINTERACTION,TRAIN–BRIDGEINTERACTION,INTERACTIONBETWEENTHETRACKANDTHEBRIDGESUPERSTRUCTUREANDTHEMATERIALPROPERTIESOFTHESTRUCTUREFORCERTAINBRIDGETYPES,SOMEOFTHESEPHENOMENAGIVERISETOMOREORLESSPRONOUNCEDNONLINEARITIES,WHICHMAYHAVENOTICEABLEEFFECTSONTHEDYNAMICPROPERTIESOFTHESTRUCTURE1TODAY,MANYRAILWAYOWNERSWISHTOUPGRADEEXISTINGBRIDGESTOMEETTHEINCREASINGDEMANDONTRAINSPEEDANDAXLELOADSINTHISCONTEXT,THEDAMPINGRATIOISHIGHLYIMPORTANTANDCANHAVEALARGEINFLUENCEONTHEORETICALESTIMATESOFTHEDYNAMICRESPONSEOFTHESTRUCTUREALSO,INTHEDESIGNOFNEWRAILWAYBRIDGESFORHIGHSPEEDRAILWAYLINESACCORDINGTOTHEEUROCODE2,THEVERTICALBRIDGEDECKACCELERATIONISOFTENDECISIVEFORTHEDYNAMICANALYSISTHEVERTICALBRIDGEDECKACCELERATIONMUSTBELIMITEDINORDERTOENSURETHATTHEWHEELRAILCONTACTISMAINTAINEDANDTOELIMINATETHERISKFORBALLASTINSTABILITYINTHECASEOFBALLASTEDRAILWAYBRIDGESFORTHESEREASONS,ITWOULDBEDESIRABLETOLEARNMOREABOUTTHEPHENOMENAGOVERNINGTHEDISSIPATIONOFENERGYINRAILWAYBRIDGES?CORRESPONDINGAUTHORTEL4687907949EMAILADDRESSMAHIRULKERBYVKTHSEMüLKERKAUSTELLONEAPPROACHTOINCREASINGOURKNOWLEDGEWITHINTHISFIELDWOULDBETOESTABLISHARELIABLEEXPERIMENTALMETHODOLOGYTODETERMINEHOWTHEDAMPINGRATIOVARIESWITHTHEAMPLITUDEOFVIBRATIONANDTHENUSETHATKNOWLEDGEASABASISFORTHEORETICALSTUDIESOFTHEPHENOMENAWHICHAREBELIEVEDTOGOVERNTHISBEHAVIORFORTHISPURPOSE,ALTERNATIVEMETHODSSHOULDBEUSEDTOVERIFYTHEOUTCOMEOFTHEEXPERIMENTALPROCEDURESTHISPAPERAIMSATDESCRIBINGTHEAPPLICATIONOFSUCHANALTERNATIVE,NAMELYTHECONTINUOUSWAVELETTRANSFORMCWTTHISMATHEMATICALTOOLHASTRADITIONALLYBEENAPPLIEDINQUANTUMMECHANICSANDSIGNALANALYSIS3,4,BUTDURINGLATERYEARS,SEVERALAUTHORSHAVEPRESENTEDAPPLICATIONSINSYSTEMIDENTIFICATIONANDTOSOMEEXTENTALSODAMAGEDETECTIONSEE5ANDTHEREFERENCESTHEREIN,THOUGHMOSTPUBLICATIONSDESCRIBETHEORETICALAND/ORLABORATORYSTUDIESSTASZEWSKI6USEDTHECWTTOESTIMATETHEDAMPINGOFSIMULATEDLINEARANDNONLINEARMULTIDEGREEOFFREEDOMSYSTEMSWITHADDITIVENOISE,BASEDONTHEASSUMPTIONTHATTHESYSTEMISVISCOUSLYDAMPEDSLAVI?ETAL7SUCCEEDEDINAPPLYINGTHECWTTOEXPERIMENTALDATAPRODUCEDINALABORATORY,FORALINEARLYELASTIC,VISCOUSLYDAMPEDBEAMLEANDARGOUL8DESCRIBEDPROCEDURESTOIDENTIFYTHEEIGENFREQUENCIES,DAMPINGRATIOSANDMODESHAPESOFLINEARSTRUCTURALSYSTEMSFROMFREEVIBRATIONDATABYMEANSOFTHECWTANEXTENSIONTOWARDSAPPLICATIONSOFTHECWTTOIDENTIFYNONLINEARSYSTEMSWASSUGGESTEDBYSTASZEWSKI9WHERETHECWTWASUSEDTOESTIMATETHESKELETONTHEVARIATIONOFTHEAMPLITUDEWITHTIMEOFDIFFERENTSIGNALSTHESECONCEPTSWEREFURTHERELABORATEDBYTAANDLARDIES10,WHOAPPLIEDTHEIRMETHODOLOGYTOSIMULATEDNUMERICALDATAAND01410296/–SEEFRONTMATTER?2010ELSEVIERLTDALLRIGHTSRESERVEDDOI101016/JENGSTRUCT201012012MüLKERKAUSTELL,RKAROUMI/ENGINEERINGSTRUCTURES332011911–919913TIMESFREQUENCYHZ05101520253035–0500525335445505101520253035FIG1THECWTOFTHEFIRSTBENDINGMODEOFTHEBRIDGEATSKIDTR?SKSEESECTION3TOGETHERWITHITSRIDGEBLACKSOLIDLINEANDTHEBOUNDARIESGREY,DASHEDLINESWITHINWHICHTHEEDGEEFFECTISNEGLIGIBLEFIRSTFACTOROFEQ14,WHEREASINTHEMATLABWAVELETTOOLBOX,THECOMPLEXMORLETWAVELETISDIRECTLYDEFINEDWITHTHISPARAMETERTHISFACTORMAYBEVARIEDSOTHATTHEVARIATIONOFTHEAMPLITUDEOFTHEMORLETWAVELETISSTRETCHEDORCONTRACTEDTHECENTERFREQUENCYΩ0OFTHEMORLETWAVELETISAPPROXIMATELYBOUNDEDFROMBELOWBYΩ0≥5INORDERTOFULFILLTHECONDITION323THEEDGEEFFECTDUETOTHEFINITEDURATIONOFTHEANALYZEDSIGNAL,THEREISAMISMATCHBETWEENTHEWAVELETFUNCTIONANDTHESIGNALATTHEBEGINNINGANDENDOFTHESIGNALTHISISREFERREDTOASTHEEDGEEFFECTANDTHEREISNOKNOWNPROCEDUREBYWHICHITCANBEREMOVEDHOWEVER,ONECANDETERMINEADOMAINDFORAANDBONWHICHTHEEDGEEFFECTISNEGLIGIBLE7,8IN8,THEFOLLOWINGBOUNDSONTHECIRCULARFREQUENCYWEREDETERMINED2CTQΜΨΩJ≤BJ≤L?2CTQΜΨΩJ150ΩJ≤2ΠFNYQUIST1CF2Q16WHERECT≥1ANDCF≥1AREPARAMETERSCHOSENSOTHATWHENTANDΩAREOUTSIDETHEINTERVALSICTTΨ?CT?TΨ,TΨCT?TΨ17ANDICFΩΨ?CF?ΩΨ,ΩΨCF?ΩΨ18RESPECTIVELY,THEWAVELETANDITSFOURIERTRANSFORMHAVEVERYSMALLVALUESIN8AGOODCOMPROMISEWASFOUNDINCTCF5,WHICHHAVEALSOBEENUSEDHERETHESEBOUNDSARESHOWNINFIG1USINGREDDASHEDLINESSEVERALMETHODSTOREDUCETHEEDGEEFFECTINSHORTSIGNALSAREDESCRIBEDIN15,INTHEPRESENTCONTEXTHOWEVER,THEABOVEDESCRIBEDBOUNDSWEREFOUNDTOBESUFFICIENT24ASYMPTOTICANALYSISFORACERTAINGROUPOFWAVELETS,REFERREDTOASANALYTICORPROGRESSIVEWAVELETS,THEANALYSISCANBEMUCHSIMPLIFIEDIFTHESIGNALISASYMPTOTICANANALYTICFUNCTIONFAISCHARACTERIZEDBYHAVINGAFOURIERTRANSFORMWHICHISZEROFORALLNEGATIVEFREQUENCIES?FAΩ0,?Ω019AGENERALMONOCHROMATICSIGNALCANBEDESCRIBEDINTERMSOFANINSTANTANEOUSAMPLITUDEATANDPHASEΦTBYFUNCTIONSOFTHEFORM16UTATCOSΦT20THEN,THEINSTANTANEOUSCIRCULARFREQUENCYCANBEDEFINEDASTHETIMEDERIVATIVEOFTHEPHASEΩT˙ΦT21IFTHEAMPLITUDEATVARIESSLOWLYCOMPAREDTOTHEPHASEΦT,IEIFTHEFOLLOWINGCONDITIONSAREMET??˙ΦT???????˙ATAT????22THESIGNALISASYMPTOTICIFTHESIGNALISASYMPTOTICANDTHEWAVELETISANALYTIC,THECWTCANBEAPPROXIMATEDBY16?TΨUA,B≈√A2ABEIΦB?Ψ?A˙ΦB2325THERIDGEANDSKELETONOFTHECWTASSUMINGTHATTHESIGNALCONSISTSOFONLYONECOMPONENT,THEMAXIMUMMODULUSOFITSCWTWILLBERESTRICTEDTOACURVEINTHEABFIG2THEESTIMATEDNATURALFREQUENCYANDTHECORRESPONDINGEQUIVALENTVISCOUSDAMPINGRATIOOFTHEFIRSTBENDINGMODEOFTHEBRIDGESEESECTION3AWITHOUTSMOOTHINGTHEAMPLITUDEANDPHASEFROMTHESKELETONGREY,WITHSMOOTHINGBLACKBTHEDASHEDPARTSOFTHELINESILLUSTRATETHEREGIONSOFTHECWTESTIMATESWHICHAREAFFECTEDBYTHEEDGEEFFECTSANDTHEPARTDURINGWHICHTHETRAINISSTILLONTHEBRIDGE
下載積分: 10 賞幣
上傳時間:2024-03-14
頁數(shù): 9
大小: 2.08(MB)
子文件數(shù):