復(fù)雜背景下的運(yùn)動(dòng)人體跟蹤算法研究.pdf_第1頁
已閱讀1頁,還剩79頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、運(yùn)動(dòng)人體的跟蹤技術(shù)研究是機(jī)器視覺領(lǐng)域的核心課題之一,目前被廣泛應(yīng)用在視頻編碼、智能交通、智能監(jiān)控、圖像檢索及軍工等眾多領(lǐng)域中。本文就低對比度的復(fù)雜環(huán)境下運(yùn)動(dòng)人體跟蹤技術(shù)進(jìn)行了深入的研究,著重分析在了低對比度的復(fù)雜環(huán)境下如何進(jìn)行運(yùn)動(dòng)人體目標(biāo)的識別和提取以及目標(biāo)的后續(xù)跟蹤,主要完成了以下幾項(xiàng)工作:
  1.背景的快速構(gòu)建與更新:復(fù)雜的場景中,尤其是對于大面積監(jiān)控的場景,采取單一背景生成及維護(hù)模型,總會(huì)消耗系統(tǒng)大量資源用于處理無用的信息

2、。針對這一問題,我們運(yùn)用了一種分區(qū)管理的背景建模方法,對于不同的區(qū)域采用不同的方法進(jìn)行建模,可以更加有效地利用系統(tǒng)資源。在背景生成和維護(hù)階段,把背景區(qū)域劃分成一個(gè)個(gè)大小相等的區(qū)域(類似“貼片”),并根據(jù)這些“貼片”所在區(qū)域的不同變化特征分別進(jìn)行更新,可以在占用很少系統(tǒng)資源的同時(shí),快速地適應(yīng)環(huán)境的變化。
  2.運(yùn)動(dòng)目標(biāo)的快速精確提取:為了在得到較為細(xì)致的運(yùn)動(dòng)目標(biāo)形狀的同時(shí),又可以避免對場景非平穩(wěn)變化的敏感性,本文運(yùn)用了基于局部鄰域

3、相似度的目標(biāo)檢測方法,在對輸入視頻中像素進(jìn)行分析的同時(shí)考慮周圍背景的相似性,通過像素周圍圖像塊在時(shí)域中的變化來區(qū)分背景和前景,在沒有任何預(yù)處理的情況下,不僅有效地降低了噪聲的干擾,并能夠快速準(zhǔn)確地提取出運(yùn)動(dòng)目標(biāo)。
  3.低對比度下運(yùn)動(dòng)人體的識別:針對造成低對比度下運(yùn)動(dòng)人體識別困難的兩個(gè)主要因素,拍攝時(shí)光線昏暗和拍攝時(shí)距離較遠(yuǎn),引入局部直方圖熵概念,提出基于局部直方圖熵的人體識別算法,運(yùn)用檢測率和虛警率對實(shí)驗(yàn)數(shù)據(jù)進(jìn)行評價(jià),獲取兩種

4、低對比度環(huán)境下獲取人體的最佳局部直方圖熵差值的閾值,通過對理論和實(shí)驗(yàn)數(shù)據(jù)的分析,得出基于局部直方圖熵的人體識別算法在準(zhǔn)確度上仍需提高,進(jìn)而引入局部灰度熵概念,提出基于局部灰度熵的人體識別算法,運(yùn)用檢測率與虛警率對算法進(jìn)行的評價(jià),獲取局部灰度熵差值的最佳閾值,經(jīng)過對算法進(jìn)行的綜合評價(jià),得出基于局部灰度熵的人體識別算法更適合于低對比度下的人體識別。
  4.運(yùn)動(dòng)人體追蹤:由于Mean Shift算法在對運(yùn)動(dòng)人體進(jìn)行追蹤時(shí)表現(xiàn)出了很高的

5、實(shí)時(shí)性,而且其對一些干擾素并不敏感,所以本文在對人體進(jìn)行實(shí)時(shí)性追蹤時(shí)采取基于 Mean Shift的運(yùn)動(dòng)人體追蹤算法。但是為了進(jìn)一步提高基于 Mean Shift算法的穩(wěn)健性,本文做出了一些改進(jìn),設(shè)計(jì)了基于改進(jìn)的 Mean Shift運(yùn)動(dòng)人體追蹤算法:在目標(biāo)建模階段,結(jié)合人體識別對人體區(qū)域進(jìn)行定位,對區(qū)域內(nèi)的人體目標(biāo)進(jìn)行多特征建模,選擇反差大的特征子模型來對目標(biāo)進(jìn)行跟蹤;在后續(xù)跟蹤階段,通過對目標(biāo)特征和周圍區(qū)域的特征進(jìn)行對比,選擇最優(yōu)子

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論