道路撞擊檢測系統(tǒng)中英文資料外文翻譯--線性掃描式照相機(jī)控制的道路檢測系統(tǒng)的研究_第1頁
已閱讀1頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、<p><b>  中文2600字</b></p><p>  線性掃描式照相機(jī)控制的道路檢測系統(tǒng)的研究</p><p>  摘要:本論文描述了基于GPS和單片機(jī)的串行端口通訊技術(shù)的道路檢測系統(tǒng),該技術(shù)過去常常用來控制線性掃描式照相機(jī)。本論文集中論述了GPS和串行端口通訊以及單片機(jī)控制程序。通過對比和分析大量的實驗數(shù)據(jù)和該系統(tǒng)對高速行駛的汽車拍攝的一系列圖片

2、,顯示出該系統(tǒng)的設(shè)計滿足了對于道路檢測系統(tǒng)在實時線性掃描式照相機(jī)中外部觸發(fā)器控制的要求。這一結(jié)果顯示以高速拍攝的這些圖片是相當(dāng)清晰的。</p><p>  關(guān)鍵詞:GPS,單片機(jī),串行通訊,撞擊檢測</p><p><b>  1緒論</b></p><p>  由于車輛的超重,雨水的腐蝕,氣候的變化,道路可能被毀壞。使用傳統(tǒng)的撞擊檢測方法可能

3、導(dǎo)致不良效果,高額成本,不安全已經(jīng)檢測結(jié)果缺乏一致性。隨著計算機(jī)軟硬件技術(shù)的發(fā)展,自動化道路檢測技術(shù)變?yōu)榭赡?。這一技術(shù)不僅極大的改善提高了檢測的準(zhǔn)確率,縮短了檢測周期,而且克服了檢測的主體性。在自動化道路檢測領(lǐng)域有重大的意義。目前,我國與發(fā)達(dá)國家的道路檢測技術(shù)仍然存在著巨大差距。</p><p>  在道路撞擊檢測系統(tǒng)中,線性掃描式照相機(jī)記錄關(guān)于道路的高速實時照片,然后將照片發(fā)送至主要的圖像處理計算機(jī),最后通過圖

4、像分析軟件處理照片,得出撞擊的位置,長度以及面積為了得出對于道路保養(yǎng)的相關(guān)信息。該檢測系統(tǒng)主要是由汽車,線性掃描式照相機(jī),GPS,計算機(jī),圖像處理軟件,單片機(jī)控制系統(tǒng)。使用該系統(tǒng)檢測瀝青道路可以發(fā)現(xiàn)僅僅2毫米寬或長的撞擊和撞擊的位置。通過使用高速GPS[1]和單片機(jī)控制算法,認(rèn)識到對于線性掃描式照相機(jī)的實時控制根據(jù)每2毫米產(chǎn)生一觸發(fā)信號。這一檢測結(jié)果滿足該系統(tǒng)的要求,與此同時獲得了更為清晰的道路動態(tài)圖像。</p><

5、p>  線性掃描式照相機(jī)控制系統(tǒng)的設(shè)計結(jié)構(gòu)如下圖1-1所示</p><p>  圖1-1 線性掃描式照相機(jī)控制系統(tǒng)設(shè)計結(jié)構(gòu)圖</p><p>  2.GPS和單片機(jī)串行端口通訊以及控制實現(xiàn)方式</p><p>  通過GPS的使用,這一系統(tǒng)主要被用作測量撞擊的位置和車輛的速度。GPS和單片機(jī)的連接依靠RS232串行接口標(biāo)準(zhǔn)。RS232定義為在數(shù)據(jù)終端設(shè)備(D

6、TE)和數(shù)據(jù)通訊設(shè)備(DCE)之間的物理接口標(biāo)準(zhǔn)[2]。</p><p>  單片機(jī)串行端口初始化程序依靠特殊功能寄存器PCON和功率控制寄存器SCON。SCON串行端口被用作設(shè)置工作模式,接收或發(fā)送控制/狀態(tài)信號。串行端口有四種工作模式。該系統(tǒng)使用工作模式2。由于安裝了波特率為4800的GPS,不再需要計算它。通訊模式采用8-N-1。GPS定位模式有2種。一種是信號點定位模式,另一種是不同的定位模式。信號點定位

7、方式一直使用一個GPS接收器為了接收3或4個衛(wèi)星信號以便于確定接收信號的位置。但是它的錯誤率相對比較高,甚至高達(dá)5~15米。GPS有不同種類的數(shù)據(jù)格式,通常我們在數(shù)據(jù)的開頭使用$GPRMC格式,設(shè)置它作為標(biāo)準(zhǔn)接收數(shù)據(jù)格式。GPS使用RS232來傳輸數(shù)據(jù),所以我們應(yīng)該在GPS和SCM之間添加一個MAX232來完成邏輯標(biāo)準(zhǔn)轉(zhuǎn)換。轉(zhuǎn)換后的數(shù)據(jù)被直接傳輸?shù)絊CM后,該系統(tǒng)能夠獲得車輛的速度值。電路設(shè)計如下圖2-1所示。</p>&

8、lt;p>  圖2-1 GPS&SCM串行通訊接口電路設(shè)計</p><p>  該系統(tǒng)采用COM 1傳輸數(shù)據(jù),波特率為4800。單片機(jī)串行端口采用工作方式2。以下是部分執(zhí)行程序:</p><p>  TMOD=0x20;//定時器 1 工作模式2 (主要用于定時)</p><p>  TL1=0xf3;11</p><p>

9、  TH1=0xf3;SCON=0x50;PCON=0x00;IE=0x90;//串行端口中斷許可</p><p>  TR1=1; } 串行 () 中斷 4 使用 1 //串行端口中斷服務(wù)功能實現(xiàn)</p><p>  {RI=0; //軟件清除中斷標(biāo)記</p><p>  if (SBUF==0x24)</p&g

10、t;<p>  {num++;record=1;i=0;k=0;r=1;igps=0;//記錄速度數(shù)據(jù)的數(shù)字</p><p>  numbercoma=0; if (record==1) // Begin to judge whether the data received 開始判斷這一數(shù)據(jù)是否接受GPRMC格式</p><p>  { s="GPRMC"

11、;string[k]=SBUF;</p><p>  k++;r=strcmp(string,s);if(r==0)</p><p>  { if(SBUF==0x2c) {numbercoma++;}//記錄逗號的個數(shù)</p><p>  if(numbercoma==2)</p><p>  {if(SBUF==0x41)// 如果第二個

12、判斷是A,那么數(shù)據(jù)有效</p><p>  {if (numbercoma==7) //位于第七個逗號后的字符代表速度信號{stringgps[igps]=SBUF; //將這個字符賦予字符串 "stringgps "中</p><p>  igps++;}}} // the first command is over when receive the second $

13、, Variable given the initial value當(dāng)接受到賦予初值的第二個$時第一條命令結(jié)束</p><p>  if (num==2){stringgps[igps]='\0'; // The end of the data presented at the end of the string字符串結(jié)束標(biāo)志位</p><p>  numbercoma=0

14、; num=0; Record=0; igps=0; //當(dāng)變量為零時重新接受速度數(shù)據(jù)</p><p>  3單片機(jī)控制的實時行掃描照相機(jī)</p><p>  單片機(jī)控制的實時行掃描照相機(jī)使用單片機(jī)89C51[3]微控制機(jī)。由于每兩毫米產(chǎn)生一個觸發(fā)信號的需要給照相機(jī),該系統(tǒng)使用計時器來控制單片機(jī)中的觸發(fā)時間,顯示來自依靠串行通訊的GPS的車輛速度[4]。它使用該單片機(jī)的T1計時器來計時。計

15、時器的模式采用模式1。它需要計算間隔時間,該時間是2毫米的觸發(fā)器根據(jù)車輛的速度值所得到的。在這一模式中,該系統(tǒng)預(yù)先設(shè)置時間作為12秒使用計時器T1,依靠P20端口標(biāo)準(zhǔn)輸出來實現(xiàn)對于照相機(jī)的控制。</p><p>  該系統(tǒng)使用方式1計時。該方式能獲得更多的計時時間和更大的計時周期。該檢測系統(tǒng)能過滿足照相機(jī)工作頻率的要求[5]。通過使用軟件來控制TF1和TR1能夠得到最好的計時器輸入和輸出,這意味著依靠計時器的時間

16、和計時周期來控制觸發(fā)器信號。該系統(tǒng)選擇計時器1的模式1工作。振晶為12MHz。機(jī)器周期為1μs,預(yù)設(shè)時間周期為12μs,接著12μs =(2-Y)*1μs,然后計算初始計時值Y作為65,524,將這一值放進(jìn)16位計時器,接受啟動T1計時器。當(dāng)計時時間為12μs時結(jié)束,TF1=1。根據(jù)不同的速度值和公式:x=3000/v,計算周期時間和為了控制照相機(jī)的工作頻率獲得P20高低水平控制。以下是部分執(zhí)行程序:</p><p&

17、gt;<b>  {</b></p><p><b>  int v=35;</b></p><p>  int x;//加入速度值,作為一變量</p><p>  x=(3000)/(v); //計算周期時間</p><p><b>  led_on();</b></p

18、><p>  time_lms(x);</p><p>  led_off();</p><p>  time_lms(x);</p><p><b>  }</b></p><p><b>  while(1);</b></p><p><b>

19、;  }</b></p><p>  time_lms(lms)</p><p>  {TMOD=TMOD& (0x0f)|0x10;</p><p>  TR1=1; //開始計時</p><p>  While (lms--)</p><p>  {TH1=65524/256;</p>

20、;<p>  TL1=65524/256;</p><p>  While (!TF1)</p><p><b>  TF1=1;</b></p><p><b>  }</b></p><p><b>  TR1=0;</b></p><p&

21、gt;  led_off(){P2_0=1;</p><p><b>  }</b></p><p><b>  led_on()</b></p><p><b>  {P2_0=0;}</b></p><p><b>  3 圖像分析和對比</b><

22、;/p><p>  系統(tǒng)使用GPS為了定位起始位置并且將道路公里數(shù)結(jié)合于標(biāo)記精確的道路撞擊地點[6]。由于該系統(tǒng)需要在車輛運行時拍攝道路的動態(tài)照片,同時需要滿足每兩毫米拍攝一幀圖片的要求,因此該系統(tǒng)需要控制線性掃描式照相機(jī)的工作頻率以獲得實時照片。該系統(tǒng)使用GPS為了獲得車輛的速度值,并且通過串行通訊傳輸該速度值至單片機(jī)控制系統(tǒng)以實現(xiàn)每兩毫米拍攝一幀照片的照相機(jī)控制。由于該系統(tǒng)采用線性排列的照相機(jī),它需要在每毫米的距

23、離提供一個觸發(fā)信號來滿足兩毫米寬度路面撞擊的檢測精度要求[7]。如果該系統(tǒng)并未采用實時控制照相機(jī)的工作頻率,那么線性掃描式照相機(jī)接受到的大部分照片是不清晰的。由于車輛在行駛中的速度總是不斷變化的,使用該論文中設(shè)計的控制系統(tǒng)將獲得更加清晰路面照片[8]。采用恒定的頻率采集方式將達(dá)不到如此清晰的動態(tài)照片。該論文設(shè)計的系統(tǒng)滿足道路撞擊檢測精度要求。與此同時下面的圖片提供了可靠的根據(jù)。圖3-1和圖3-2是拍攝的兩張道路檢測的照片案例。</

24、p><p>  圖3-1 實時控制照相機(jī)采集的照片</p><p>  圖3-2 非實時照相機(jī)采集的照片</p><p><b>  4 結(jié)論</b></p><p>  該系統(tǒng)設(shè)計實現(xiàn)了以下功能:</p><p>  該系統(tǒng)通過硬件和軟件的設(shè)計實現(xiàn)了速度值的測量,并且設(shè)計了控制GPS和單片機(jī)串行

25、通訊的程序[9]。</p><p>  根據(jù)車輛的速度值程序控制P20單片機(jī)端口輸出電壓以監(jiān)控線性掃描式實時照相機(jī)的工作頻率。</p><p>  該系統(tǒng)使道路撞擊檢測精確度要求達(dá)到了2毫秒級別的精度,并且能夠獲得十分清晰的動態(tài)圖片以至在公路檢測方面達(dá)到很好的效果。</p><p> ?。?) 通過對比采集照片的質(zhì)量和大量的外圍實驗數(shù)據(jù)顯示,該設(shè)計系統(tǒng)能夠在車輛高速

26、行駛的情況下獲得清晰的動態(tài)照片。</p><p>  Line-Scan Camera Control Pavement Detection</p><p>  System Research</p><p>  Zhao-yun Sun1, Ai-min Sha2, Li Zhao3, and Chang-rong Xie</p><p>

27、  1 College of information engineering, Chang’an University, Xi’an 710064, China</p><p>  zhaoyunsun@126.com</p><p>  2 College of road, Chang’an University, Xi’an 710064, China</p><p

28、>  3 College of information engineering, Chang’an University, Xi’an 710064, China</p><p>  Abstract. The paper designs the pavement detecting system, which is based on GPS and the serial port communicatio

29、n technology of the SCM (single-chipmicrocomputer) used to control the line-scan camera. The paper focuses on GPS and the serial port communication as well as the control programs of singlechip microcomputer .By comparin

30、g and analyzing large amounts of experiments’ data and the serial images which are obtained in the high-speed vehicle moving by using this system, it shows that this s</p><p>  Keywords: GPS; single-chip mic

31、rocomputer; serial communication; crack detection.</p><p>  1 Introduction</p><p>  Because of the overweight of vehicles, rain erosion, climate change, the pavement may be destroyed. Using trad

32、itional crack detecting methods may lead to low efficiency, high cost, insecurity and poor consistency of detecting results. With the development of computer hardware and software technology, automatic pavement detection

33、 technology becomes possible. It not only greatly improves the detection rate, shortens the detecting cycle, but also overcomes the subjectivity of the detecting. It has </p><p>  Fig 1. Line-scan camera con

34、trol system design structure</p><p>  2 GPS and SCM Serial Port Communication as Well as Control Realizing Method</p><p>  By using GPS, the system is mainly used to obtain the crack location an

35、d the speed of the vehicle. The link between GPS and SCM depends on the RS232 serial interface standard. RS232 defines the physical interface standards between the data terminal equipment (DTE) and the data communication

36、s equipment (DCE) [2]. SCM serial port initializes programming finished by the special function register PCON and power control SCON register. SCON serial port is used to set the working modes, accept or send </p>

37、<p>  Fig. 2. GPS & SCM serial communication interface circuit design</p><p>  The system adopts com1 to transfer data. The baud rate is 4800. SCM serial port</p><p>  adopts the mode

38、2 to work. Part of the realizing program is as follows:</p><p>  TMOD=0x20; //timer1 working mode 2 (mainly used for timing)</p><p>  TL1=0xf3;11</p><p>  TH1=0xf3; SCON=0x50; PCON=

39、0x00; IE=0x90;//serial port interrupt permitting</p><p>  TR1=1; } serial () interrupt 4 using 1 //Serial port interrupt service function</p><p>  {RI=0; //software clear interrupt index</p&g

40、t;<p>  if (SBUF==0x24)</p><p>  {num++;record=1;i=0;k=0;r=1;igps=0;// variables Recording number of characters</p><p>  speed data</p><p>  numbercoma=0; if (record==1) // B

41、egin to judge whether the data received</p><p>  GPRMC format</p><p>  { s="GPRMC";string[k]=SBUF;</p><p>  k++;r=strcmp(string,s);if(r==0)</p><p>  { if(SBUF

42、==0x2c) {numbercoma++;}//record the numbers of comma</p><p>  if(numbercoma==2)</p><p>  {if(SBUF==0x41)// if the second judge is A, then the data is valid</p><p>  {if (numbercoma=

43、=7) //the character followed the seventh comma is speed signal</p><p>  {stringgps[igps]=SBUF; //put the character into the string "stringgps "</p><p>  igps++;}}} // the first command

44、 is over when receive the second $, Variable given</p><p>  the initial value</p><p>  if (num==2){stringgps[igps]='\0'; // The end of the data presented at the end of the</p><

45、;p><b>  string</b></p><p>  numbercoma=0; num=0; Record=0; igps=0; //restart receiving speed data when</p><p>  Variable get zero.</p><p>  3 SCM Control the Line- Sc

46、an Camera in Real-Time</p><p>  SCM controls the line-scan camera in real-time by using SCM 89 C51 [3] microcontroller.Due to the need of every two millimeters to give a trigger signal to the camera, the sys

47、tem uses timer to control the trigger time in SCM, reads the vehicle’s speed from the GPS by serial communication [4]. It uses the SCM T1 timer to time. The timing mode adopts mode1. It needs to calculate the interval ti

48、me required by 2 millimeters to trigger according to the vehicle’s speed value. In this method, the syste</p><p><b>  follows:</b></p><p><b>  {</b></p><p>&

49、lt;b>  int v=35;</b></p><p>  int x;//adding the speed values, there is a Valuation</p><p>  x=(3000)/(v); //calculate the cycle times</p><p><b>  led_on();</b>

50、</p><p>  time_lms(x);</p><p>  led_off();</p><p>  time_lms(x);</p><p><b>  }</b></p><p><b>  while(1);</b></p><p>&l

51、t;b>  }</b></p><p>  time_lms(lms)</p><p>  {TMOD=TMOD& (0x0f)|0x10;</p><p>  TR1=1; //start the timer</p><p>  While (lms--)</p><p>  {TH1=65

52、524/256;</p><p>  TL1=65524/256;</p><p>  While (!TF1)</p><p><b>  TF1=1;</b></p><p><b>  }</b></p><p><b>  TR1=0;</b>&

53、lt;/p><p>  led_off(){P2_0=1;</p><p><b>  }</b></p><p><b>  led_on()</b></p><p><b>  {P2_0=0;}</b></p><p>  3 Image Analys

54、is and Comparison</p><p>  The system uses GPS to locate the beginning place and combines the road kilometer piles to mark the exact pavement cracks place [6]. Because the system needs to capture the pavemen

55、t dynamic images in the vehicle moving, at the same time, meet the requirements two meters to give a frame image , thus the system needs to control the work frequency of line-scan camera to obtain real-time images. The s

56、ystem uses GPS to get the speed of the vehicle, and then sends it to the SCM control system by the s</p><p>  Fig. 3. Real-time control capturing acquisition images</p><p>  Fig. 4. Non- real-ti

57、me capturing acquisition images</p><p>  4 Conclusion</p><p>  The system design realizing the functions are as follows:</p><p>  (1) The system realizes the speed values measuremen

58、t by designing hardware and software, programs to control GPS and SCM serial communication [9].</p><p>  (2) According to the vehicle’s speed value, programs control SCM P20 port output voltage to supervise

59、the work frequency of the line-scan camera in real-time.</p><p>  (3) The system finishes the pavement crack’s detection accuracy requirement which is to recognize 2mm crack. It can obtain much clearer movin

60、g images and also run well in the highway detection.</p><p>  (4) By comparing the acquisition image’s quality and large amounts of outside experiments’ data, it shows that the design system can obtain dynam

61、ic images clearly in high speed of vehicle moving.</p><p>  References</p><p>  [1] Le, X., Zhiqiang, L., Feng, Z.: The study and realize of GPS supervision system. Journal of East China normal

62、university: natural science (3) (2005)</p><p>  [2] Yali, W., Yong-ling, W., Jun, W.: C programming language tutorial. The People’s traffic Press, Beijing (2002)</p><p>  [3] Wentao, L.: SCM C51

63、 microcontroller language typical application design. People’s Posts and Telecommunications News Press, Beijing (2005)</p><p>  [4] Quanli, L., Rongjiang, C.: SCM principles and interface technology. Higher

64、Education Press, Beijing (2004) Line-Scan Camera Control Pavement Detection System Research 13</p><p>  [5] Huobin, D., Xin, X., Chunping, T.: The Application of SCM in the control of ice cold center air-con

65、ditions. Micro-computer information (3) (2005)</p><p>  [6] Qiwei, Y.: SCM C51 procedure design and experiment. University of Aeronautics and Astronautics Press, Beijing (2006)</p><p>  [7] Kun,

66、 J., Qingzhou, M.: Intelligence pavement acquisition system. Electron measurement technology (4) (2005)</p><p>  [8] Jin-hui, L., Wei, L., Shoushan, J.: The study of road illness detection technology basing

67、on CCD. Journal of Xi’an institute of technology (3) (2005)</p><p>  [9] Kezhao, L., Jinaping, Y., Qin, Z.: The study of GPS document’s decode and the realize of real time communication. Global positioning s

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論