版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p><b> 英文原文:</b></p><p> Fatigue life prediction of the metalwork of a travelling gantry</p><p><b> crane</b></p><p> V.A. Kopnov</p><p&
2、gt;<b> Abstract</b></p><p> Intrinsic fatigue curves are applied to a fatigue life prediction problem of the metalwork of a traveling gantry crane. A crane, used in the forest industry, was stu
3、died in working conditions at a log yard, an strain measurements were made. For the calculations of the number of loading cycles, the rain flow cycle counting technique is used. The operations of a sample of such cranes
4、were observed for a year for the average number of operation cycles to be obtained. The fatigue failure analysis ha</p><p> Key words: Cranes; Fatigue assessment; Strain gauging</p><p> 1. Int
5、roduction</p><p> Fatigue failures of elements of the metalwork of traveling gantry cranes LT62B are observed frequently in operation. Failures as fatigue cracks initiate and propagate in welded joints of t
6、he crane bridge and supports in three-four years. Such cranes are used in the forest industry at log yards for transferring full-length and sawn logs to road trains, having a load-fitting capacity of 32 tons. More than 1
7、000 cranes of this type work at the enterprises of the Russian forest industry. The problem </p><p> 2. Analysis of the crane operation</p><p> For the analysis, a traveling gantry crane LT62B
8、 installed at log yard in the Yekaterinburg region was chosen. The crane serves two saw mills, creates a log store, and transfers logs to or out of road trains. A road passes along the log store. The saw mills are instal
9、led so that the reception sites are under the crane span. A schematic view of the crane is shown in Fig. 1.</p><p> 1350-6307/99/$一see front matter 1999 Elsevier Science Ltd. All rights reserved.</p>
10、<p> PII: S 1 3 5 0一6307(98) 00041一7</p><p> A series of assumptions may be made after examining the work of cranes:</p><p> ·if the monthly removal of logs from the forest exceed
11、s the processing rate, i.e. there is a creation of a log store, the crane expects work, being above the centre of a formed pile with the grab lowered on the pile stack;</p><p> ·when processing exceeds
12、 the log removal from the forest, the crane expects work above an operational pile close to the saw mill with the grab lowered on the pile;</p><p> ·the store of logs varies; the height of the piles is
13、 considered to be a maximum;</p><p> ·the store variation takes place from the side opposite to the saw mill;</p><p> ·the total volume of a processed load is on the average k=1.4 ti
14、mes more than the total volume of removal because of additional transfers.</p><p> 2.1. Removal intensity</p><p> It is known that the removal intensity for one year is irregular and cannot
15、be considered as a stationary process. The study of the character of non-stationary flow of road trains at 23 enterprises Sverdlesprom for five years has shown that the monthly removal intensity even for one enterprise e
16、ssentially varies from year to year. This is explained by the complex of various systematic and random effects which exert an influence on removal: weather conditions, conditions of roads and lorry fleet,</p><
17、p> Therefore, the less possibility of removing wood in the season between spring and autumn, the more intensively the wood removal should be performed in winter. While in winter the removal intensity exceeds the proc
18、essing considerably, in summer, in most cases, the more full-length logs are processed than are taken out.</p><p> From the analysis of 118 realizations of removal values observed for one year, it is possib
19、le to evaluate the relative removal intensity g(t) as percentages of the annual load turnover. The removal data fisted in Table 1 is considered as expected values for any crane, which can be applied to the estimation of
20、fatigue life, and, particularly, for an inspected crane with which strain measurement was carried out (see later). It would be possible for each crane to take advantage of its load turnover</p><p> The dist
21、ribution of removal value Q(t) per month performed by the relative intensity q(t) is written as</p><p> where Q is the annual load turnover of a log store, A is the maximal designed store of logs in percent
22、 of Q. Substituting the value Q, which for the inspected crane equals 400,000 m3 per year, and A=10%, the volumes of loads transferred by the crane are obtained, which are listed in Table 2, with the total volume being 5
23、60,000 m3 for one year using K,.</p><p> 2.2. Number of loading blocks</p><p> The set of operations such as clamping, hoisting, transferring, lowering, and getting rid of a load can be consid
24、ered as one operation cycle (loading block) of the crane. As a result to investigations, the operation time of a cycle can be modeled by the normal variable with mean equal to 11.5 min and standard deviation to 1.5 min.
25、unfortunately, this characteristic cannot be simply used for the definition of the number of operation cycles for any work period as the local processing is extremely </p><p> The volume of a unit load can
26、be modeled by a random variable with a distribution function(t) having mean22 m3 and standard deviation 6;一3 m3, with the nominal volume of one pack being 25 m3. Then, knowing the total volume of a processed load for a m
27、onth or year, it is possible to determine distribution parameters of the number of operation cycles for these periods to take advantage of the methods of renewal theory [1].</p><p> According to these metho
28、ds, a random renewal process as shown in Fig. 2 is considered, where the random volume of loads forms a flow of renewals: </p><p> In renewal theory, realizations of random:,,,having a distribution function
29、 F(t), are understood</p><p> as moments of recovery of failed units or request receipts. The value of a processed load:,,after</p><p> }th operation is adopted here as the renewal moment.<
30、;/p><p> Let F(t)=P﹛<t﹜. The function F(t) is defined recurrently,</p><p> Let v(t) be the number of operation cycles for a transferred volume t. In practice, the total volume of a transferred l
31、oad t is essentially greater than a unit load, and it is useful therefore totake advantage of asymptotic properties of the renewal process. As follows from an appropriate</p><p> limit renewal theorem, the
32、random number of cycles v required to transfer the large volume t has</p><p> the normal distribution asymptotically with mean and variance.</p><p> without dependence on the form of the distr
33、ibution function月t) of a unit load (the restriction is</p><p> imposed only on nonlattice of the distribution).</p><p> Equation (4) using Table 2 for each averaged operation month,function of
34、 number of load cycles with parameters m,. and 6,., which normal distribution in Table 3. Figure 3 shows the average numbers of cycles with 95 % confidence intervals. The values of these parameters</p><p>
35、for a year are accordingly 12,719 and 420 cycles.</p><p> 3. Strain measurements</p><p> In order to reveal the most loaded elements of the metalwork and to determine a range of stresses, stat
36、ic strain measurements were carried out beforehand. Vertical loading was applied by hoisting measured loads, and skew loading was formed with a tractor winch equipped with a dynamometer. The allocation schemes of the bon
37、ded strain gauges are shown in Figs 4 and 5. As was expected, the largest tension stresses in the bridge take place in the bottom chord of the truss (gauge 11-45 MPa). The top c</p><p> being less compresse
38、d than the top one (gauge 17-75 and 10-20 MPa). The other elements of the bridge are less loaded with stresses not exceeding the absolute value 45 MPa. The elements connecting the support with the bridge of the crane are
39、 loaded also irregularly. The largest compression stresses take place in the carrying angles of the interior panel; the maximum stresses reach h0 MPa (gauges 8 and 9). The largest tension stresses in the diaphragms and a
40、ngles of the exterior panel reach 45 MPa</p><p> The elements of the crane bridge are subjected, in genera maximum stresses and respond weakly to skew loads. The suhand, are subjected mainly to skew loads.1
41、, to vertical loads pports of the crane gmmg rise to on the other</p><p> The loading of the metalwork of such a crane, transferring full-length logs, differs from that of</p><p> a crane used
42、 for general purposes. At first, it involves the load compliance of log packs because of</p><p> progressive detachment from the base. Therefore, the loading increases rather slowly and smoothly.The second
43、characteristic property is the low probability of hoisting with picking up. This is conditioned by the presence of the grab, which means that the fall of the rope from the spreader block is not permitted; the load should
44、 always be balanced. The possibility of slack being sufficient to accelerate an electric drive to nominal revolutions is therefore minimal. Thus, the forest traveling gant</p><p> When a high acceleration w
45、ith the greatest possible clearance in the joint between spreader andgrab takes place, the tension of the ropes happens 1 s after switching the electric drive on, the</p><p> clearance in the joint taking u
46、p. The revolutions of the electric motors reach the nominal value in</p><p> O.}r0.7 s. The detachment of a load from the base, from the moment of switching electric motors</p><p> on to the m
47、oment of full pull in the ropes takes 3-3.5 s, the tensions in ropes increasing smoothly</p><p> to maximum. The stresses in the metalwork of the bridge and supports grow up to maximum</p><p>
48、 values in 1-2 s and oscillate about an average within 3.5%.</p><p> When a rigid load is lifted, the accelerated velocity of loading in the rope hanger and metalwork</p><p> is practically th
49、e same as in case of fast hoisting of a log pack. The metalwork oscillations are characterized by two harmonic processes with periods 0.6 and 2 s, which have been obtained from spectral analysis. The worst case of loadin
50、g ensues from summation of loading amplitudes so that the maximum excess of dynamic loading above static can be 13-14%.Braking a load, when it is lowered, induces significant oscillation of stress in the metalwork, which
51、 can be }r7% of static loading. Moving over</p><p> 4. Fatigue loading analysis</p><p> Strain measurement at test points, disposed as shown in Figs 4 and 5, was carried out during the work of
52、 the crane and a representative number of stress oscillograms was obtained. Since a common operation cycle duration of the crane has a sufficient scatter with average value } 11.5min, to reduce these oscillograms uniform
53、ly a filtration was implemented to these signals, and all repeated values, i.e. while the construction was not subjected to dynamic loading and only static loading occurred, we</p><p> Fig. 6 where the inte
54、rior sequence of loading for an operation cycle is visible. At first, stresses</p><p> increase to maximum values when a load is hoisted. After that a load is transferred to the necessary location and stres
55、ses oscillate due to the irregular crane movement on rails and over rail joints resulting mostly in skew loads. The lowering of the load causes the decrease of loading and forms half of a basic loading cycle.</p>
56、<p> 4.1. Analysis of loading process amplitudes</p><p> Two terms now should be separated: loading cycle and loading block. The first denotes one distinct oscillation of stresses (closed loop), and t
57、he second is for the set of loading cycles during an operation cycle. The rain flow cycle counting method given in Ref. [2] was taken advantage of to carry out the fatigue hysteretic loop analysis for the three weakest e
58、lements: (1) angle of the bottom chord(gauge 11), (2) I-beam of the top chord (gauge 17), (3) angle of the support (gauge 8). Statistical</p><p> 4.2. Numbers of loading cycles</p><p> During
59、the rain flow cycle counting procedure, the calculation of number of loading cycles for the loading block was also carried out. While processing the oscillograms of one type, a sample number of loading cycles for one blo
60、ck is obtained consisting of integers with minimum and maximum observed values: 24 and 46. The random number of loading cycles vibe can be described</p><p> by the Poisson distribution with parameter =34.&l
61、t;/p><p> Average numbers of loading blocks via months were obtained earlier, so it is possible to find the appropriate characteristics not only for loading blocks per month, but also for the total number of l
62、oading cycles per month or year if the central limit theorem is taken advantage of. Firstly, it is known from probability theory that the addition of k independent Poisson variables gives also a random variable with the
63、Poisson distribution with parameter k},. On the other hand, the Poisson distribut</p><p> 5. Stress concentration factors and element endurance</p><p> The elements of the crane are jointed by
64、 semi-automatic gas welding without preliminary edge preparation and consequent machining. For the inspected elements 1 and 3 having circumferential and edge welds of angles with gusset plates, the effective stress conce
65、ntration factor for fatigue is given by calculation methods [3], kf=2.}r2.9, coinciding with estimates given in the current Russian norm for fatigue of welded elements [4], kf=2.9.</p><p> The elements of t
66、he crane metalwork are made of alloyed steel 09G2S having an endurance limit of 120 MPa and a yield strength of 350 MPa. Then the average values of the endurance limits of the inspected elements 1 and 3 are ES一l=41 MPa.
67、The variation coefficient is taken as 0.1, and the corresponding standard deviation is 6S-、一4.1 MPa.</p><p> The inspected element 2 is an I-beam pierced by holes for attaching rails to the top flange. The
68、rather large local stresses caused by local bending also promote fatigue damage accumulation. According to tables from [4], the effective stress concentration factor is accepted as kf=1.8, which gives an average value of
69、 the endurance limit as ES一l=h7 Map. Using the same variation coiffing dent th e stand arid d emit ion is =6.7 MPa.</p><p> An average S-N curve, recommended in [4], has the form:</p><p> wi
70、th the inflexion point No=5·106 and the slope m=4.5 for elements 1 and 3 and m=5.5 for element 2.</p><p> The possible values of the element endurance limits presented above overlap the ranges of load
71、amplitude with nonzero probability, which means that these elements are subjected to fatigue damage accumulation. Then it is possible to conclude that fatigue calculations for the elements are necessary as well as fatigu
72、e fife prediction.</p><p> 6. Life prediction</p><p> The study has that some elements of the metalwork are subject to fatigue damage accumulation.To predict fives we shall take advantage of i
73、ntrinsic fatigue curves, which are detailed in [5]and [6].</p><p> Following the theory of intrinsic fatigue curves, we get lognormal life distribution densities for the inspected elements. The fife average
74、s and standard deviations are fisted in Table 5. The lognormal fife distribution densities are shown in Fig. 7. It is seen from this table that the least fife is for element 3. Recollecting that an average number of load
75、 blocks for a year is equal to 12,719, it is clear that the average service fife of the crane before fatigue cracks appear in the welded elem</p><p> 7. Conclusions</p><p> The analysis of the
76、 crane loading has shown that some elements of the metalwork are subjectedto large dynamic loads, which causes fatigue damage accumulation followed by fatigue failures.The procedure of fatigue hfe prediction proposed in
77、this paper involves tour parts:</p><p> (1) Analysis of the operation in practice and determination of the loading blocks for some period.</p><p> (2) Rainflow cycle counting techniques for th
78、e calculation of loading cycles for a period of standard operation.</p><p> (3) Selection of appropriate fatigue data for material.</p><p> (4) Fatigue fife calculations using the intrinsic f
79、atigue curves approach.</p><p> The results of this investigation have been confirmed by the cases observed in practice, and the manufacturers have taken a decision about strengthening the fixed elements to
80、 extend their fatigue lives.</p><p> References</p><p> [1] Feller W. An introduction to probabilistic theory and its applications, vol. 2. 3rd ed. Wiley, 1970.</p><p> [2] Rychl
81、ik I. International Journal of Fatigue 1987;9:119.</p><p> [3] Piskunov V(i. Finite elements analysis of cranes metalwork. Moscow: Mashinostroyenie, 1991 (in Russian).</p><p> [4] MU RD 50-694
82、-90. Reliability engineering. Probabilistic methods of calculations for fatigue of welded metalworks.</p><p> Moscow: (iosstandard, 1990 (in Russian).</p><p> [5] Kopnov VA. Fatigue and Fractu
83、re of Engineering Materials and Structures 1993;16:1041.</p><p> [6] Kopnov VA. Theoretical and Applied Fracture Mechanics 1997;26:169.</p><p><b> 中文翻譯</b></p><p> 龍門
84、式起重機金屬材料的疲勞強度預測</p><p><b> v.a.科普諾夫</b></p><p><b> 摘要</b></p><p> 內(nèi)在的疲勞曲線應(yīng)用到龍門式起重機金屬材料的疲勞壽命預測問題。起重機,用于在森林工業(yè)中,在伐木林場對各種不同的工作條件進行研究,并且做出相應(yīng)的應(yīng)變測量。對載重的循環(huán)周期進行計算
85、,下雨循環(huán)計數(shù)技術(shù)得到了使用。在一年內(nèi)這些起重機運作的樣本被觀察為了得到運作周期的平均數(shù)。疲勞失效分析表明,一些元件的故障是自然的系統(tǒng)因素,并且不能被一些隨意的原因所解釋。1999年Elsevier公司科學有限公司。保留所有權(quán)利。</p><p> 關(guān)鍵詞:起重機;疲勞評估;應(yīng)變測量</p><p> 1.緒論 頻繁觀測龍門式起重機LT62B在運作時金屬元件疲勞
86、失效。引起疲勞裂紋的故障沿著起重機的橋梁焊接接頭進行傳播,并且能夠支撐三到四年。這種起重機在森林工業(yè)的伐木林場被廣泛使用,用來轉(zhuǎn)移完整長度的原木和鋸木到鐵路的火車上,有一次裝載30噸貨物的能力。 這種類型的起重機大約1000臺以上工作在俄羅斯森林工業(yè)的企業(yè)中。限制起重機壽命的問題即最弱的要素被正式找到之后,預測其疲勞強度,并給制造商建議,以提高起重機的壽命。</p><p> 2.起重機運行分析 &
87、#160;為了分析,在葉卡特琳堡地區(qū)的林場碼頭選中了一臺被安裝在葉卡特琳堡地區(qū)的林場碼頭的龍門式起重機LT62B, 這臺起重機能夠供應(yīng)兩個伐木廠建立存儲倉庫,并且能轉(zhuǎn)運木頭到鐵路的火車上,這條鐵路通過存儲倉庫。這些設(shè)備的安裝就是為了這個轉(zhuǎn)貨地點在起重機的跨度范圍之內(nèi)。一個起重機示意圖顯示在圖1中 。 1350-6307/99 /元,看到前面的問題。 1999年Elsevier公司科學有限公司保留所有權(quán)利。 PH:S1350-6307
88、(98)00041-7</p><p> V.A.Kopnov|機械故障分析6(1999)131-141</p><p><b> 圖1起重機簡圖</b></p><p> 檢查起重機的工作之后,一系列的假設(shè)可能會作出: ·如果每月從森林移動的原木超過加工率,即是有一個原木存儲的倉庫,這個起重機期待的工作,也只是在原木加工的實
89、際堆數(shù)在所供給原木數(shù)量的中心線以下;·當處理超過原木從森林運出的速度時,起重機的工作需要在的大量的木材之上進行操作,相當于在大量的木材上這個鋸木廠賺取的很少;·原木不同的倉庫;大量的木材的高度被認為是最高的; ·倉庫的變化,取替了一側(cè)對面的鋸軋機; ·裝載進程中總量是平均為K=1.4倍大于移動總量由于額外的轉(zhuǎn)移。</p><p> 2.1 搬運強度 &
90、#160;據(jù)了解,每年的搬運強度是不規(guī)律的,不能被視為一個平穩(wěn)過程。非平穩(wěn)流動的道路列車的性質(zhì)在23家企業(yè)中已經(jīng)研究5年的時間,結(jié)果已經(jīng)表明在年復一年中,對于每個企業(yè)來說,每個月的搬運強度都是不同的。這是解釋復雜的各種系統(tǒng)和隨機效應(yīng),對搬運施加的影響:天氣條件,道路條件和貨車車隊等,所有木材被運送到存儲倉庫的木材,在一年內(nèi)應(yīng)該被處理。 因此,在春季和秋季搬運木頭的可能性越來越小,冬天搬運的可能性越來越大,然而在冬天搬運強度強于預想的,在
91、夏天的情況下,更多足夠長的木材就地被處理的比運出去的要多的多。</p><p> V.A.Kopnov|機械故障分析6(1999)131-141</p><p><b> 表1</b></p><p><b> 搬運強度(%)</b></p><p><b> 表2</b&
92、gt;</p><p><b> 轉(zhuǎn)移儲存量</b></p><p> 通過一年的觀察,從118各搬運值的觀察所了解到的數(shù)據(jù)進行分析,并且有可能評價相關(guān)的搬運強度(噸)參考年度的裝載量的百分比。該搬運的數(shù)據(jù)被記錄在起重機預期值表1中,它可以被應(yīng)用到估計疲勞壽命,尤其是為檢查起重機應(yīng)變測量(見稍后) 。將有可能為每個起重機,每一個月所負荷的載重量,建立這些數(shù)據(jù),無需
93、特別困難的統(tǒng)計調(diào)查。此外,為了解決這個問題的壽命預測的知識是未來的荷載要求, 在類似的操作條件下,我們采取起重機預期值。</p><p> 每月搬運價值的分布Q(t) ,被相對強度q(t)表示為 其中Q是每年的裝載量的記錄存儲,是設(shè)計的最大存儲原木值Q以百分比計算,其中為考察起重機等于40.0萬立方米每年, 和容積載重搬運為10 % 的起重機,得到的數(shù)據(jù)列在表2 中,總量56000立方米每年,用K
94、表示。</p><p> 2.2 .裝載木塊的數(shù)量 這個運行裝置,如夾緊,吊裝,轉(zhuǎn)移,降低,和釋放負載可被視為起重機的一個運行周期(加載塊)。參照這個調(diào)查結(jié)果,以操作時間為一個周期,作為范本,由正常變量與平均值11.5分相等等,標準差為1.5分鐘。不幸的是,這個特點不能簡單地用于定義運作周期的數(shù)目,任何工作期間的載重加工是非常不規(guī)則。使用運行時間的起重機和評價周期時間,,與實際增加一個數(shù)
95、量的周期比,很容易得出比較大的誤差,因此,最好是作為如下。 測量一個單位的載荷,可以作為范本,由一個隨機變量代入分布函數(shù)得出,并且比實際一包貨物少然后,明知總量的加工負荷為1個月或一年可能確定分布參數(shù)的數(shù)目,運作周期為這些時期要利用這個方法的更新理論</p><p> V.A.Kopnov|機械故障分析6(1999)131-141</p><p> 圖2隨機重
96、建過程中的負荷</p><p> 根據(jù)這些方法,隨機重建過程中所顯示的圖。二是考慮到, (隨機變量)負荷,形成了一個流動的數(shù)據(jù)鏈:</p><p> 在重建的理論中,隨機變量:,有一個分布函數(shù)f(t)的,可以被理解為在失敗的連接或者要求收據(jù)時的恢復時刻。過程的載荷值,作為下一次的動作的通過值,被看作是重建的時刻。</p><p> 設(shè)。函數(shù)f ( t )反復被
97、定義,</p><p> 假設(shè)V ( t )是在運作周期內(nèi)轉(zhuǎn)移貨物的數(shù)量。實踐中,總轉(zhuǎn)移貨物的總噸數(shù),基本上是大于機組負荷,,由于利用漸近性質(zhì)的重建過程所以式有益的。根據(jù)下面適當?shù)南拗浦亟ǘɡ?,需要轉(zhuǎn)移大量噸數(shù)。已正態(tài)分布漸近與均值和方差,確定抽樣數(shù)量的周期v</p><p> 而不依賴于整個的形式分布函數(shù)的, (只對不同的格式分配進行限制)。 利用表2的每個
98、月平均運作用方程( 4 )表示,賦予正態(tài)分布功能的數(shù)量,負載周期與參數(shù)m和6。在正態(tài)分布表3中 。圖3顯示的平均人數(shù)周期與95 %的置信區(qū)間某一年的相應(yīng)的值為12719和420個周期。</p><p><b> 表3</b></p><p><b> 運作周期的正太分布</b></p><p> 3 .應(yīng)變測量
99、160; 為了顯示大多數(shù)金屬的負載元素,并且確定一系列的壓力,事前做了靜態(tài)應(yīng)變測量。垂直載荷用來測量懸掛負載,并且斜交加載由一個牽引力所形成,配備了一臺測力計。靜態(tài)應(yīng)力值分布在圖4和5中 。同樣地預計,梁上的最大的拉應(yīng)力,發(fā)生在底部的桁架上(值為11-45 MPA )。頂端的桁架受到最大的壓縮應(yīng)力。 此處的彎曲應(yīng)力所造成的壓力,車輪起重機,手推車等被添加到所說的橋梁和負荷的重量。這些壓力的結(jié)果,在底部的共振的的I梁那么壓縮應(yīng)力
100、比最高的1 處要大得多(值17-75和10-20兆帕斯卡),其他要素的梁加載的值</p><p> V.A.Kopnov|機械故障分析6(1999)131-141</p><p><b> 月份</b></p><p> 圖3 95%的置信區(qū)間運作周期的平均數(shù)</p><p> V.A.Kopnov|機械故障分
101、析6(1999)131-141</p><p><b> 圖4梁的分配計劃</b></p><p> 不超過絕對值45兆帕斯卡。連接與支持的橋梁起重機加載的時間,也不定期。最大的壓縮應(yīng)力發(fā)生在變形的最大角度,在內(nèi)部看來;最高壓力值將達到到h0MPa和痛苦(計8日和9 ) 。在隔板和角度1的支板上,最大的拉應(yīng)力達到45兆帕斯卡(壓力表1 )。 起重機梁的器件在受到最
102、大壓力和軸向載荷較弱的時候,另一方面,所遭受的主要是斜負荷。起重機的豎向載荷主要是由牽引力引起的。</p><p> 這種轉(zhuǎn)移完整長度的木材的起重機的金屬的載重量,不同于一般用途的起重機。首先它必須遵循起重機的裝載規(guī)則,由于逐步脫離基地。因此,負荷增加,并不是慢慢的順利進行。 第二個特點是物質(zhì)吊裝的加快導致低低效率。這是抓斗所存在的所限制,這意味著不允許繩索從吊具座下降;載重量應(yīng)始終保持平衡。負載減弱加快電機運
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于單片機外文翻譯@中英文翻譯@外文文獻翻譯
- 金屬切削外文翻譯@中英文翻譯@外文文獻翻譯
- 隨車液壓起重機的控制外文文獻翻譯、中英文翻譯.doc
- 隨車液壓起重機的控制外文文獻翻譯、中英文翻譯.doc
- 隨車液壓起重機的控制外文文獻翻譯、中英文翻譯.doc
- 隨車液壓起重機的控制外文文獻翻譯、中英文翻譯.doc
- 螺桿壓縮機外文文獻翻譯@中英文翻譯@外文翻譯
- 汽車舉升機中英文翻譯@外文翻譯@外文文獻翻譯
- 數(shù)字機起重機提升轉(zhuǎn)換課程畢業(yè)設(shè)計設(shè)計外文文獻翻譯、中英文翻譯、外文翻譯
- jsp最佳實踐外文翻譯@中英文翻譯@外文文獻翻譯
- 機械設(shè)計外文文獻翻譯@中英文翻譯@外文文獻翻譯
- 植物保護外文文獻翻譯、中英文翻譯、外文翻譯
- 起重機的用途與歷史課程畢業(yè)設(shè)計外文文獻翻譯、外文翻譯、中英文翻譯
- 柔性制造中英文翻譯、外文文獻翻譯
- 如何延長軸承壽命外文文獻翻譯@外文文獻翻譯@中英文翻譯
- plc的應(yīng)用外文文獻翻譯、中英文翻譯、外文翻譯
- 移動式數(shù)控龍門銑床的總體設(shè)計外文文獻翻譯中英文翻譯外文翻譯
- 切削加工新概念外文翻譯@中英文翻譯@外文文獻翻譯
- 激光清洗及其應(yīng)用外文文獻翻譯、中英文翻譯、外文翻譯
- 掘進機機械類外文翻譯@中英文翻譯@外文文獻翻譯
評論
0/150
提交評論