土建專業(yè)畢業(yè)設(shè)計外文翻譯--建筑的組成部分_第1頁
已閱讀1頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、<p>  畢業(yè)論文(設(shè)計)外文翻譯</p><p>  Components of A Building and Tall Buildings</p><p>  1. Abstract</p><p>  Materials and structural forms are combined to make up the various parts o

2、f a building, including the load-carrying frame, skin, floors, and partitions. The building also has mechanical and electrical systems, such as elevators, heating and cooling systems, and lighting systems. The superstru

3、cture is that part of a building above ground, and the substructure and foundation is that part of a building below ground.</p><p>  The skyscraper owes its existence to two developments of the 19th century:

4、 steel skeleton construction and the passenger elevator. Steel as a construction material dates from the introduction of the Bessemer converter in 1885.Gustave Eiffel (1832-1932) introduced steel construction in France.

5、 His designs for the Galerie des Machines and the Tower for the Paris Exposition of 1889 expressed the lightness of the steel framework. The Eiffel Tower, 984 feet (300 meters) high, was the tallest struct</p>&l

6、t;p>  Elisha Otis installed the first elevator in a department store in New York in 1857.In 1889, Eiffel installed the first elevators on a grand scale in the Eiffel Tower, whose hydraulic elevators could transport 2,

7、350 passengers to the summit every hour.</p><p>  2. Load-Carrying Frame</p><p>  Until the late 19th century, the exterior walls of a building were used as bearing walls to support the floors.

8、This construction is essentially a post and lintel type, and it is still used in frame construction for houses. Bearing-wall construction limited the height of building because of the enormous wall thickness requ

9、ired;for instance, the 16-story Monadnock Building built in the 1880’s in Chicago had walls 5 feet (1.5 meters) thick at the lower floors. In 1883, William Le Baron Jen</p><p>  All tall buildings were built

10、 with a skeleton of steel until World War Ⅱ. After the war, the shortage of steel and the improved quality of concrete led to tall building being built of reinforced concrete. Marina Tower (1962) in Chicago is the talles

11、t concrete building in the United States; its height—588 feet (179 meters)—is exceeded by the 650-foot (198-meter) Post Office Tower in London and by other towers.</p><p>  A change in attitude about skyscra

12、per construction has brought a return to the use of the bearing wall. In New York City, the Columbia Broadcasting System Building, designed by Eero Saarinen in 1962,has a perimeter wall consisting of 5-foot (1.5meter) wi

13、de concrete columns spaced 10 feet (3 meters) from column center to center. This perimeter wall, in effect, constitutes a bearing wall. One reason for this trend is that stiffness against the action of wind can be econom

14、ically obtained by using t</p><p><b>  3. Skin</b></p><p>  The skin of a building consists of both transparent elements (windows) and opaque elements (walls). Windows are traditiona

15、lly glass, although plastics are being used, especially in schools where breakage creates a maintenance problem. The wall elements, which are used to cover the structure and are supported by it, are built of a variety of

16、 materials: brick, precast concrete, stone, opaque glass, plastics, steel, and aluminum. Wood is used mainly in house construction; it is not generally used f</p><p><b>  4. Floors</b></p>

17、<p>  The construction of the floors in a building depends on the basic structural frame that is used. In steel skeleton construction, floors are either slabs of concrete resting on steel beams or a deck consisting

18、 of corrugated steel with a concrete topping. In concrete construction, the floors are either slabs of concrete on concrete beams or a series of closely spaced concrete beams (ribs) in two directions topped with a thin c

19、oncrete slab, giving the appearance of a waffle on its underside. The ki</p><p>  5. Mechanical and Electrical Systems</p><p>  A modern building not only contains the space for which it is inte

20、nded (office, classroom, apartment) but also contains ancillary space for mechanical and electrical systems that help to provide a comfortable environment. These ancillary spaces in a skyscraper office building may const

21、itute 25% of the total building area. The importance of heating, ventilating, electrical, and plumbing systems in an office building is shown by the fact that 40% of the construction budget is allocated to them. Be</p

22、><p>  There have been attempts to incorporate the mechanical and electrical systems into the architecture of building by frankly expressing them; for example, the American Republic Insurance Company Building(1

23、965) in Des Moines, Iowa, exposes both the ducts and the floor structure in an organized and elegant pattern and dispenses with the suspended ceiling. This type of approach makes it possible to reduce the cost of the bui

24、lding and permits innovations, such as in the span of the structure.</p><p>  6. Soils and Foundations</p><p>  All building are supported on the ground, and therefore the nature of the soil bec

25、omes an extremely important consideration in the design of any building. The design of a foundation depends on many soil factors, such as type of soil, soil stratification, thickness of soil lavers and their compaction,

26、and groundwater conditions. Soils rarely have a single composition; they generally are mixtures in layers of varying thickness. For evaluation, soils are graded according to particle size, which inc</p><p> 

27、 Due to both the compaction and flow effects, buildings tend settle. Uneven settlements, exemplified by the leaning towers in Pisa and Bologna, can have damaging effects—the building may lean, walls and partitions may cr

28、ack, windows and doors may become inoperative, and, in the extreme, a building may collapse. Uniform settlements are not so serious, although extreme conditions, such as those in Mexico City, can have serious consequence

29、s. Over the past 100 years, a change in the groundwater level</p><p>  The great variability of soils has led to a variety of solutions to the foundation problem. Where</p><p>  firm soil exist

30、s close to the surface, the simplest solution is to rest columns on a small slab of concrete(spread footing). Where the soil is softer, it is necessary to spread the column load over a greater area;in this case, a contin

31、uous slab of concrete(raft or mat) under the whole building is used. In cases where the soil near the surface is unable to support the weight of the building, piles of wood, steel, or concrete are driven down to firm soi

32、l.</p><p>  The construction of a building proceeds naturally from the foundation up to the superstructure. The design process, however, proceeds from the roof down to the foundation (in the direction of gra

33、vity). In the past, the foundation was not subject to systematic investigation. A scientific approach to the design of foundations has been developed in the 20th century. Karl Terzaghi of the United States pioneered stu

34、dies that made it possible to make accurate predictions of the behavior of foundation</p><p>  Although there have been many advancements in building construction technology in general, spectacular achieveme

35、nts have been made in the design and construction of ultrahigh-rise buildings.</p><p>  The early development of high-rise buildings began with structural steel framing. Reinforced concrete and stressed-skin

36、 tube systems have since been economically and competitively used in a number of structures for both residential and commercial purposes. The high-rise buildings ranging from 50 to 110 stories that are being built all ov

37、er the United States are the result of innovations and development of new structural systems.</p><p>  Greater height entails increased column and beam sizes to make buildings more rigid so that under wind l

38、oad they will not sway beyond an acceptable limit. Excessive lateral sway may cause serious recurring damage to partitions, ceilings, and other architectural details. In addition, excessive sway may cause discomfort to t

39、he occupants of the building because of their perception of such motion. Structural systems of reinforced concrete, as well as steel, take full advantage of the inherent potent</p><p>  In a steel structure,

40、 for example, the economy can be defined in terms of the total average quantity of steel per square foot of floor area of the building. Curve A in Fig.1 represents the average unit weight of a conventional frame with inc

41、reasing numbers of stories. Curve B represents the average steel weight if the frame is protected from all lateral loads. The gap between the upper boundary and the lower boundary represents the premium for all lateral l

42、oads. The gap between the upper boundar</p><p>  7. Tube in tube</p><p>  Another system in reinforced concrete for office buildings combines the traditional shear wall construction with an exte

43、rior framed tube. The system consists of an outer framed tube of very closely spaced columns and an interior rigid shear wall tube enclosing the central service area. The system (Fig.2), known as the tube-in-tube system,

44、 made it possible to design the world’s present tallest (714 ft or 218 m) lightweight concrete building (the 52-story One Shell Plaza Building in Houston) for t</p><p>  Systems combining both concrete and s

45、teel have also been developed, an example of which is the composite system developed by Skidmore, Owings & Merrill in which an exterior closely spaced framed tube in concrete envelops an interior steel framing, there

46、by combining the advantages of both reinforced concrete and structural steel systems. The story One Shell Square Building in New Orleans is based on this system.</p><p><b>  建筑的組成部分</b></p>

47、<p><b>  1 摘要</b></p><p>  材料和結(jié)構(gòu)類型是構(gòu)成建筑物各方面的組成部分,包括承重結(jié)構(gòu)、圍護(hù)結(jié)構(gòu)、樓地面和隔墻。在建筑物內(nèi)部還有機(jī)械和電氣系統(tǒng),例如電梯、供暖和冷卻系統(tǒng)、照明系統(tǒng)等。高于地面的部分是建筑物的上部結(jié)構(gòu),地面以下部分為建筑物的基礎(chǔ)和地基。</p><p>  摩天大樓的出現(xiàn)應(yīng)歸功于19世紀(jì)的兩個新發(fā)明:鋼結(jié)構(gòu)建筑和

48、載人電梯。鋼材作為結(jié)構(gòu)材料是從1855年貝色麥煉鋼法被首次介紹后開始應(yīng)用的。古斯塔?艾菲爾(1832~1923)首次介紹鋼結(jié)構(gòu)建筑是在法國。他的設(shè)計是為1889年的巴黎國際博覽會所設(shè)計的理想的建筑,表達(dá)了鋼結(jié)構(gòu)的輕巧。艾菲爾鐵塔高300米,是當(dāng)時人類建造的最高建筑物,直到40年后才由美國的摩天大樓超過其高度。</p><p>  第一部電梯是1857年Elisha Otis給紐約的一家百貨公司所安裝的。1889年

49、,艾菲爾在艾菲爾鐵塔上安裝了第一部大型液壓電梯,它每小時可以運送2350位乘客到達(dá)塔頂。</p><p><b>  2 承重框架</b></p><p>  直到19世紀(jì)后期,建筑物的外墻被用做承重墻來支撐樓層,這種結(jié)構(gòu)是基本的一種過梁類型,它還被用在框架結(jié)構(gòu)房屋中。因為所需墻體的厚度很大,承重墻結(jié)構(gòu)限制了建筑物的高度;例如,建于1880年的芝加哥16層高的Mona

50、dnock Building,在較低的樓層墻體厚度已達(dá)到1.5米。1883年,Willian Le Baron Jenney(1832~1907)用類似鳥籠形狀的鐵柱來支撐樓層。在1889年,框架結(jié)構(gòu)首次由鋼梁和鋼柱構(gòu)成。外墻成為了“幕墻”而不是被用做支撐結(jié)構(gòu)是框架結(jié)構(gòu)的一個成果。磚石一直是“幕墻”的主要材料,直到1930年輕金屬和玻璃幕墻的問世為止。自從鋼骨架首次推出,建筑物的高度一直在迅速增加。</p><p&

51、gt;  直到第二次世界大戰(zhàn)為止,所有的高層建筑都是由鋼骨架建造的。戰(zhàn)爭結(jié)束以后,鋼材的缺乏和混凝土品質(zhì)的改進(jìn),促進(jìn)了鋼筋混凝土高層建筑的發(fā)展。芝加哥的Marina Towers(1962)是美國最高的混凝土建筑;它的高度是588英尺即179米,不久以后它將超出198米高的倫敦郵政塔和其它的塔。</p><p>  在關(guān)于摩天大樓建筑中的承重墻的使用在看法上有了改變。在紐約,由Eero Saarinen于1962

52、年設(shè)計的哥倫比亞廣播公司大樓,四周的墻由1.5米寬的混凝土柱構(gòu)成,柱與柱的中心間距為3米。這種圍護(hù)墻有效地構(gòu)成了建筑物的承重墻。這種趨勢發(fā)展的原因是建筑物的墻像一個管道可以有利地抵抗風(fēng)的強(qiáng)烈作用;世貿(mào)大樓是另一個管道法的例子。相比之下,堅固的框架或垂直支撐通常提供建筑的橫向穩(wěn)定。</p><p><b>  3 圍護(hù)結(jié)構(gòu)</b></p><p>  一個建筑的圍護(hù)結(jié)

53、構(gòu)由透明的窗戶和不透明的墻組成。窗戶采用傳統(tǒng)上的玻璃作為材料年,然而塑料也被使用,特別在破損嚴(yán)重和保養(yǎng)難的學(xué)校里。墻被用來覆蓋結(jié)構(gòu)和起支撐作用,它是由多樣化的建筑材料組成:磚、現(xiàn)澆混凝土、石頭、不透明的玻璃、塑料、鋼材和鋁材。木頭是過去建造房屋的主要材料;因為它易著火,因而不常用于商業(yè)的、工業(yè)的和公共建筑。</p><p><b>  4 樓地面</b></p><p&

54、gt;  一幢建筑的樓地面結(jié)構(gòu)取決于它所使用的基本結(jié)構(gòu)框架。在鋼框架建筑中,樓地面或者是鋼梁上的混凝土樓板,或者是由波紋鋼配有混凝土骨料組成的地板。在混凝土結(jié)構(gòu)中,樓地面或者是混凝土梁上的混凝土樓板或者是一系列緊密分布于混凝土梁在方向上端的薄混凝土樓板,在它的下面抹一層抹面。樓層的種類取決于支撐柱之間的距離或者墻和空間的功能性。在一棟公寓大樓中,例如,墻和柱隔開3.7米到5.5米,最常見的結(jié)構(gòu)是無梁實心混凝土樓蓋。樓蓋的下表面是樓蓋以下

55、空間的最高限度。辦公大樓中常使用波紋鋼地板,這是因為波紋鋼地板的波紋當(dāng)由另一塊金屬板蓋上時,可以形成電話線和電線管道。</p><p><b>  5 機(jī)械電力系統(tǒng)</b></p><p>  一個現(xiàn)代建筑不僅包括必要使用空間而且也包括機(jī)械、電力系統(tǒng)等的輔助空間,以便營造一個舒適的生活環(huán)境。這些輔助空間可能占摩天大樓總建筑面積的25%。在一個辦公大樓中,供暖、通風(fēng)、

56、電力和衛(wèi)生設(shè)備系統(tǒng)的預(yù)算額占實際建筑總預(yù)算額的40%,顯示了它們在建筑中的重要性。因為許多建筑是密封的,窗戶不能被打開,因而由機(jī)械系統(tǒng)提供了通風(fēng)設(shè)備和空氣調(diào)節(jié)設(shè)備。新鮮空氣從中央換氣室由空氣調(diào)節(jié)器用管道輸入。通風(fēng)管和控制照明設(shè)備單元由懸掛在上面樓層結(jié)構(gòu)下面的天花板遮住了。提供動力的電力線路和電話通訊線路也可能在天花板里或者也可能在樓地面結(jié)構(gòu)層中的管道或?qū)Ь€管里。</p><p>  我們曾嘗試性地把機(jī)械、電力系統(tǒng)

57、加入建筑物的建筑風(fēng)格中去,讓他們裸露在結(jié)構(gòu)的外部;例如美國保險公司大樓in Des Morines ,衣阿華,管道和樓地面的結(jié)構(gòu)層有組織的、優(yōu)美的懸掛在天花板上。這類型的方法使得建筑物的花費盡可能的減少了并且使結(jié)構(gòu)有了創(chuàng)新,例如在結(jié)構(gòu)間距方面。</p><p><b>  土地和地基</b></p><p>  所有的建筑物都是靠土層支撐在地面上的,因而土的特性成為建

58、筑設(shè)計時極其重要的考慮因素?;A(chǔ)的設(shè)計取決于土的許多因素,例如土的類型,土分層的情況,土層的厚度和它的密實度,以及地下水的情況等。土層很少有一個單一的性質(zhì);他們通常是厚度變化的混合狀態(tài)土層。據(jù)評定,土層的等級是根據(jù)土分子的大小來劃分,從小到大依次是淤泥、粘土、沙、石子、巖石。通常,較大分子的土支撐的荷載要大。最堅硬的巖石能夠支撐的荷載大約是每平方米100噸,而最軟的淤泥僅能夠支撐的荷載大約是每平方米0.25噸。所有地表以下的土都處于受壓

59、狀態(tài),說得更精確些,這些土承受與作用在其上的土柱重量相等的壓力。許多土顯示出彈性的性質(zhì)——他們或被重載壓壞或卸載后又恢復(fù)。土的彈性常隨時間而改變,更精確地說,土層的變形在恒載作用下隨著時間的增長而不斷地改變。過一段時間后,如果加于土層上的荷載大于土自然壓緊狀態(tài)下的重量,則建筑物不會產(chǎn)生沉降。建筑物的重量可能會使土產(chǎn)生流動;也就是說,經(jīng)常會發(fā)生土被擠出。</p><p>  由于土受壓和流動的影響,使建筑物發(fā)生沉降

60、。不均勻沉降例如比薩斜塔,損壞的結(jié)果是建筑物發(fā)生傾斜,墻和隔墻可能出現(xiàn)裂縫,窗戶和門可能產(chǎn)生變形,或者甚至建筑可能倒塌。均勻沉降不會如此嚴(yán)重,盡管可能出現(xiàn)危險狀況,例如墨西哥城的一些建筑,出現(xiàn)各種各樣的后果,在過去的一年里,地下水位發(fā)生了改變,致使一些建筑下沉了3米多。因為類似的狀況可能發(fā)生在建造時也可能是建造后,因此小心處理建筑物下的土層是極其重要的。</p><p>  土層巨大的變化使得解決地基問題的辦法多

61、樣化。如果表面土層下的土為堅硬土層,最簡單的辦法是采用混凝土基礎(chǔ)。若是軟弱土層,加大柱的面積;假如這樣的話,整個建筑就可采用筏板基礎(chǔ)。假設(shè)表面土層不能夠支撐建筑物的重量,木結(jié)構(gòu)建筑、鋼結(jié)構(gòu)建筑、或者混凝土建筑應(yīng)建造在堅硬土層上。</p><p>  建造一幢建筑物一般是從基礎(chǔ)往上到上部結(jié)構(gòu)。然而設(shè)計的過程是從屋頂開始到基礎(chǔ)。在過去,地基處理不是一個系統(tǒng)的研究項目。在20世紀(jì),一種科學(xué)的地基設(shè)計方法已經(jīng)發(fā)展起來了。

62、美國的Karl Teraghi不斷創(chuàng)造研究,使土力學(xué)和土地勘測聯(lián)合起來,讓它盡可能準(zhǔn)確地預(yù)測地基的活動狀態(tài)。過去典型的地基破壞的例子——比薩斜塔現(xiàn)在變得幾乎不存在了。而地基仍然是建筑物中不可見部分費用最大的一部分。</p><p>  盡管大體上在建筑物的建造工藝上取得許多進(jìn)步,但是在超高層建筑物的設(shè)計和建造上仍取得了驚人的成就。</p><p>  早期的高層建筑的發(fā)展是以型鋼結(jié)構(gòu)開始的

63、。鋼筋混凝土和薄殼筒體體系已成為許多住宅和商業(yè)建筑以節(jié)儉和竟?fàn)帪槟康牡慕Y(jié)構(gòu)。作為新結(jié)構(gòu)體系的創(chuàng)新和發(fā)展的結(jié)果,美國到處都是50到110層的高層建筑。</p><p>  巨大的高度需要增加柱和梁的尺寸來使建筑物更加堅固,為的是在風(fēng)荷載作用下不致于使其傾斜度超過限值。反復(fù)地過多地側(cè)向擺動可能引起隔墻天花板和其它建筑部件的損壞。另外,過度的擺動可能會給建筑物中的居住者帶來不安和恐懼,因為會使他們有移動的感覺。鋼筋混凝

64、土結(jié)構(gòu)體系和鋼結(jié)構(gòu)一樣,內(nèi)在的潛力使得建筑物非常堅硬因此不需要附加的強(qiáng)化擺動限制。</p><p>  在一個鋼結(jié)構(gòu)中,例如,根據(jù)建筑物每平方米的樓層面積的總的平均用量表明其經(jīng)濟(jì)性。圖中曲線A表示一般性的框架在不受水平荷載的作用下鋼的平均重量。上邊界和下邊界之間的間距表示一般的梁—柱框架的重量。結(jié)構(gòu)工程師以發(fā)展結(jié)構(gòu)體系為目標(biāo)。</p><p><b>  7 框筒結(jié)構(gòu)</

65、b></p><p>  另一種體系是鋼筋混凝土外框筒結(jié)構(gòu)的辦公大樓結(jié)合傳統(tǒng)的剪力墻建筑。該體系由間距很小的柱子構(gòu)成的外框筒與圍繞中心設(shè)備區(qū)的剛性剪力墻內(nèi)筒組成。這就是有名的筒中筒體系,使用這種體系建造設(shè)計的建筑物可能是目前世界上最高的輕質(zhì)混凝土大樓(52層的休斯敦的貝殼廣場大廈)僅35層的傳統(tǒng)簡力墻結(jié)構(gòu)。</p><p>  混凝土與鋼筋結(jié)合的結(jié)構(gòu)體系已得到發(fā)展,這種復(fù)合體系發(fā)展的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論