版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p> 函數(shù)概念教學(xué)的幾點(diǎn)思考</p><p> 摘要:函數(shù)的概念及相關(guān)內(nèi)容是高中和職業(yè)類教材中非常重要的部分,許多學(xué)生認(rèn)為這些內(nèi)容比較抽象、難懂、圖像多,方法靈活多樣。以致部分學(xué)生對(duì)函數(shù)知識(shí)產(chǎn)生恐懼感。就教學(xué)過程中學(xué)生的反應(yīng)和自己的反思,淺淡幾點(diǎn)自己的看法。 </p><p> 關(guān)鍵詞:函數(shù);對(duì)應(yīng);映射;數(shù)形結(jié)合 </p><p> 中圖分類號(hào)
2、:G633.6文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1673-0992(2010)02-164-01 </p><p> 1要把握函數(shù)的實(shí)質(zhì) </p><p> 17世紀(jì)初期,笛卡爾在引入變量概念之后,就有了函數(shù)的思想,把函數(shù)一詞用作數(shù)學(xué)術(shù)語(yǔ)的是萊布尼茲,歐拉在1734年首次用f(x)作為函數(shù)符號(hào)。關(guān)于函數(shù)概念有“變量說”、“對(duì)應(yīng)說”、“集合說”等。變量說的定義是:設(shè)x、y是兩個(gè)變量,如果當(dāng)變量x在
3、實(shí)數(shù)的某一范圍內(nèi)變化時(shí),變量y按一定規(guī)律隨x的變化而變化。我們稱x為自變量,變量y叫變量x的函數(shù),記作y=f(x)。初中教材中的定義為:如果在某個(gè)變化過程中有兩個(gè)變量x、y,并且對(duì)于x在某個(gè)范圍內(nèi)的每一個(gè)確定的值,按照某個(gè)對(duì)應(yīng)法則,y都有唯一確定的值與之對(duì)應(yīng),那么y就是x的函數(shù),x叫自變量,x的取值范圍叫函數(shù)的定義域,和x的值對(duì)應(yīng)的y的值叫函數(shù)值,函數(shù)值的集合叫函數(shù)的值域。它的優(yōu)點(diǎn)是自然、形像和直觀、通俗地描述了變化,它致命的弊端就是對(duì)
4、函數(shù)的實(shí)質(zhì)――對(duì)應(yīng)缺少充分地刻畫,以致不能明確函數(shù)是x、y雙方變化的總體,卻把y定義成x的函數(shù),這與函數(shù)是反映變量間的關(guān)系相悖,究竟函數(shù)是指f ,還是f(x),還是y=f(x)?使學(xué)生不易區(qū)別三者的關(guān)系。 </p><p> 迪里赫萊(P.G .Dirichlet)注意到了“對(duì)應(yīng)關(guān)系”,于1837年提出:對(duì)于在某一區(qū)間上的每一確定的x值,y都有一個(gè)或多個(gè)確定的值與之對(duì)應(yīng),那么y叫x的一個(gè)函數(shù)。19世紀(jì)70年代集
5、合論問世后,明確把集合到集合的單值對(duì)應(yīng)稱為映射,并把:“一切非空集合到數(shù)集的映射稱為函數(shù)”,函數(shù)是映射概念的推廣。對(duì)應(yīng)說的優(yōu)點(diǎn)有:①它抓住了函數(shù)的實(shí)質(zhì)――對(duì)應(yīng),是一種對(duì)應(yīng)法則。②它以集合為基礎(chǔ),更具普遍性。③它將抽像的知識(shí)以模型并賦予生活化,比如:某班每一位同學(xué)與身高(實(shí)數(shù))的對(duì)應(yīng);某班同學(xué)在某次測(cè)試的成績(jī)的對(duì)應(yīng);全校學(xué)生與某天早上吃的饅頭數(shù)的對(duì)應(yīng)等都是函數(shù)。函數(shù)由定義域、值域、對(duì)應(yīng)法則共同刻劃,它們相互獨(dú)立,缺一不可。這樣很明確的指出
6、了函數(shù)的實(shí)質(zhì)。 </p><p> 對(duì)于集合說是考慮到集合是數(shù)學(xué)中一個(gè)最原始的概念,而函數(shù)的定義里的“對(duì)應(yīng)”卻是一個(gè)外加的形式,,似乎不是集合語(yǔ)言,1914年豪斯道夫(F.Hausdorff)采用了純集合論形式的定義:如果集合 f С{(x,y)|x∈A,y∈B}且滿足條件,對(duì)于每一個(gè)x∈A,若(x,y1) ∈f,(x,y2) ∈f,則y1=y2,這時(shí)就稱集合f為A到B的一個(gè)函數(shù)。這里f為直積A×B=
7、{(x,y)|x∈A,y∈B}的一個(gè)特殊子集,而序偶(x,y)又是用集合定義的:(x,y)={{x},{x,y}}.定義過于形式化,它舍棄了函數(shù)關(guān)系生動(dòng)的直觀,既看不出對(duì)應(yīng)法則的形式,更沒有解析式,不但不易為中學(xué)生理解,而且在推導(dǎo)中也不便使用,如此完全化的數(shù)學(xué)語(yǔ)言只能在計(jì)算機(jī)中應(yīng)用。 </p><p><b> 2加強(qiáng)數(shù)形結(jié)合 </b></p><p> 數(shù)學(xué)是人
8、們對(duì)客觀世界定性把握和定量刻畫、逐漸抽像概括、形成方法和理論,并進(jìn)行廣泛應(yīng)用的過程。在7―12年級(jí)所研究的函數(shù)主要是冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)和三角函數(shù),對(duì)每一類函數(shù)都是利用其圖像來(lái)研究其性質(zhì)的,作圖在教學(xué)中顯得無(wú)比重要。我認(rèn)為這一部分的教學(xué)要做到學(xué)生心中有形,函數(shù)圖像就相當(dāng)于佛教教徒心中各種各樣的佛像,只要心中有形,函數(shù)性質(zhì)就比較直觀,處理問題時(shí)就會(huì)得心應(yīng)手。函數(shù)觀念和數(shù)形結(jié)合在數(shù)列及平面幾何中也有廣泛的應(yīng)用。如函數(shù)y=log0.5|
9、x2-x-12|單調(diào)區(qū)間,令t=|x2-x-12|=|(x-?)2-12.25|,t=0時(shí),x=-3或x=4,知t函數(shù)的圖像是變形后的拋物線,其對(duì)稱軸為x=?與x軸的交點(diǎn)是x=-3或x=4并開口向上,其x∈(-3,4)的部分由x軸下方翻轉(zhuǎn)到x軸上方,再考慮對(duì)數(shù)函數(shù)性質(zhì)即可。又如:判定方程3x2+6x =1/x的實(shí)數(shù)根的個(gè)數(shù),該方程實(shí)根個(gè)數(shù)就是兩個(gè)函數(shù)y=3x2+6x與y=1/x圖像的交點(diǎn)個(gè)數(shù),作出圖像交點(diǎn)個(gè)數(shù)便一目了然。 </p&
10、gt;<p><b> 3將映射概念下放 </b></p><p> 就前面三種函數(shù)概念而言,能提示函數(shù)實(shí)質(zhì)的只有“對(duì)應(yīng)說”,如果在初中階段把“變量說”的定義替換成“對(duì)應(yīng)說”的定義,可有以下優(yōu)點(diǎn):⑴體現(xiàn)數(shù)學(xué)知識(shí)的系統(tǒng)性,也顯示出時(shí)代信息,為學(xué)生今后的學(xué)習(xí)作準(zhǔn)備。⑵凸顯數(shù)學(xué)內(nèi)容的生活化和現(xiàn)實(shí)性,函數(shù)是刻畫現(xiàn)實(shí)世界數(shù)量變化規(guī)律的數(shù)學(xué)模型。⑶變抽像內(nèi)容形像化,替換后學(xué)生會(huì)感到函數(shù)
11、概念不再那么抽像難懂,好像伸手會(huì)觸摸到一樣,身邊到處都有函數(shù)。學(xué)生就會(huì)感到函數(shù)不再那么可怕,它無(wú)非是一種映射。只需將集合論的初步知識(shí)下放一些即可,學(xué)生完全能夠接受,因?yàn)閺男W(xué)第一學(xué)段就已接觸到集合的表示方法,第二學(xué)段已接觸到集合的運(yùn)算,沒有必要作過多擔(dān)心。以前有人提出將概率知識(shí)下放的觀點(diǎn),當(dāng)時(shí)不也有人得出反對(duì)意見嗎?可現(xiàn)在不也下放到了小學(xué)嗎?如果能下放到初中,就使得知識(shí)體系更完備,銜接更自然,學(xué)生易于接受,學(xué)生就不會(huì)提出“到底什么是函數(shù)
12、?”這樣的問題。 </p><p><b> 4區(qū)分函數(shù)與方程 </b></p><p> 盡管函數(shù)和方程都是反映量與量之間的關(guān)系,可函數(shù)反映的是變量和變量之間的關(guān)系,強(qiáng)調(diào)的是一個(gè)變量隨另一個(gè)變量的變化情況,從函數(shù)的角度來(lái)看,考慮的是x和y在各自取值范圍內(nèi),彼此間怎樣相互變化。而方程反映的是未知量和已知量之間的關(guān)系,等式F(x,y)=0是一個(gè)方程,只有在一定條件下
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 高等數(shù)學(xué)中極限概念教學(xué)的幾點(diǎn)思考
- 函數(shù)的概念教學(xué)設(shè)計(jì)
- 函數(shù)概念教學(xué)設(shè)計(jì)
- 函數(shù)的概念的教學(xué)設(shè)計(jì)
- 《函數(shù)的概念》的教學(xué)設(shè)計(jì)
- 對(duì)案例教學(xué)的幾點(diǎn)思考
- 對(duì)案例教學(xué)的幾點(diǎn)思考
- 關(guān)于刑法教學(xué)的幾點(diǎn)思考
- 教育教學(xué)中的幾點(diǎn)思考
- 中學(xué)函數(shù)概念的教學(xué).pdf
- 《函數(shù)的概念》參賽教學(xué)設(shè)計(jì)
- 避免教學(xué)失控的幾點(diǎn)思考
- 30467.函數(shù)概念的演變及函數(shù)教學(xué)
- 關(guān)于高校日語(yǔ)教學(xué)的幾點(diǎn)思考
- 關(guān)于會(huì)計(jì)實(shí)務(wù)教學(xué)的幾點(diǎn)思考
- 創(chuàng)新歷史教學(xué)的幾點(diǎn)思考
- 關(guān)于初中數(shù)學(xué)概念教學(xué)的幾點(diǎn)探索
- 關(guān)于中職審計(jì)教學(xué)的幾點(diǎn)思考
- 優(yōu)化中職生物教學(xué)的幾點(diǎn)思考
- 試析兒童鋼琴教學(xué)的幾點(diǎn)思考
評(píng)論
0/150
提交評(píng)論