版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、1.3.21.3.2球的體積和表面積球的體積和表面積班級:班級:______________姓名:姓名:______________教學(xué)目標教學(xué)目標1、知識與技能:推導(dǎo)球的體積和面積公式,了解推導(dǎo)過程中所用的基本數(shù)學(xué)思想方法;運用球的面積和體積公式靈活解決實際問題。2、過程與方法:通過球的體積和面積公式的推導(dǎo),掌握“分割求近似值,再由近似和轉(zhuǎn)化為球的體積和面積”的方法,體現(xiàn)了極限思想。3、情感與價值觀:提高了空間思維能力和空間想象能力,
2、增強了我們探索問題和解決問題的信心。教學(xué)重點、難點教學(xué)重點、難點重點:引導(dǎo)學(xué)生了解推導(dǎo)球的體積和面積公式所運用的基本思想方法。難點:推導(dǎo)體積和面積公式中空間想象能力的形成。教學(xué)設(shè)計教學(xué)設(shè)計一、復(fù)習(xí)引入:一、復(fù)習(xí)引入:1、問題情境已知ABB1A1是圓柱的軸截面,AA1=a,AB=,P是BB1的中點;一小蟲沿圓柱的側(cè)面從34aA1爬到P,求小蟲爬過的最短路程ABPB1A1PABC(1)(2)(3)2、、學(xué)生活動觀察下圖,試配對:ABC3、聽
3、寫柱體、錐體、臺體的體積公式;圓柱、圓錐、圓臺的表面積公式。4、問題:球是一個旋轉(zhuǎn)體,它也有表面積和體積,怎樣求球的表面積和體積呢?二、知識探究二、知識探究(一)(一):球的體積球的體積思考思考1:1:從球的結(jié)構(gòu)特征分析,球的大小由哪個量所確定?例2有一種空心鋼球,質(zhì)量為142g(鋼的密度為7.9gcm3),測得其外徑為5cm,求它的內(nèi)徑(精確到0.1cm)例3已知A、B、C為球面上三點,AC=BC=6,AB=4,球心O與△ABC的外心
4、M的距離等于球半徑的一半,求這個球的表面積和體積.例4已知正方體的八個頂點都在球O的球面上,且正方體的表面積為a2,求球O的表面積和體積.拓展1:若正方體的邊長為a,求正方體的內(nèi)切球的半徑拓展2:若正四面體的邊長為a,求正四面體的內(nèi)切球的半徑拓展3:若正四面體的邊長為a,求正四面體的外接球的半徑四、鞏固深化、反饋矯正四、鞏固深化、反饋矯正1、正方形的內(nèi)切球和外接球的體積的比為,表面積比為。2、在球心同側(cè)有相距9cm的兩個平行截面,它們的
5、面積分別為49πcm2和400πcm2,求球的表面積。五、課堂學(xué)習(xí)小結(jié)五、課堂學(xué)習(xí)小結(jié)六、練習(xí):六、練習(xí):課本練習(xí)28頁1,2,3.作業(yè):作業(yè):1、填空題(1)若球的大圓面積擴大為原來的倍,則球的體積比原來增加倍;4(2)把半徑分別為3,4,5的三個鐵球,熔成一個大球,則大球半徑是;(3)正方體全面積是,它的外接球的體積是,內(nèi)切球的體積是242、長方體的一個頂點上三條棱長分別為3、4、5,是它的八個頂點都在同一球面上,求這個球的表面積。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論