[雙語翻譯]手勢識別外文翻譯--光照不變的實(shí)時魯棒手勢識別(英文)_第1頁
已閱讀1頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、Optik159(2018)283–294ContentslistsavailableatScienceDirectOptikjournalhome page:www.elsevier.de/ijleoOriginalresearcharticleLightinvariantreal-timerobusthandgesturerecognitionAnkitChaudhary a,?, J.L.Raheja ba DataScienc

2、eDivision,SchoolofComputerScience,NorthwestMissouriStateUniversity,MO,USAb Cyber-PhysicalSystems,CEERI-CSIR,RJ,Indiaa r t i cl e i nfoArticlehistory:Received25August2016Accepted22November2017Keywords:Gesturerecogn

3、itionOrientationhistogramLightintensityinvariantsystemsExtremechangeinlightintensityNaturalcomputingRobustskindetectiona bs t r ac tComputervisionhas spread over differentdomainsto facilitatedifficultoperations.

4、It worksasthe artificialeye for manyindustrialapplicationsto observeelements,process, automa-tionand to find defects.Vision-basedsystemscan also be appliedto normalhumanlifeoperationsbut changinglight condi

5、tionsis a big problemfor thesesystems.Hand ges-turerecognitioncan be embeddedwith many existing interactiveapplications/gamestomakeinteractionnaturaland easy but changingilluminationand non-uniformbackground

6、smakeit verydifficultto perform operationswith goodimage segmentation.Ifa visionbasedsystemisinstalledin publicdomain,different peoplearesupposedto work on theapplication.Thispaper demonstratesa light intens

7、ityinvarianttechniquefor hand gesture recog-nitionwhich can be easily appliedto othervision-basedapplicationsalso. The techniquehasbeen tested on differentpeople in differentlight conditionswith the extr

8、emechangeinintensity.This was done as one skin colorlooksdifferentin changedlightintensityanddifferentskin colors maylook same in changedlight intensity.Theorientationhistogramwasused to identifyuniquefeatu

9、res ofa hand gestureand itwas comparedusing super-visedANN. The overall accuracyof 92.86%is achievedin extremelight intensitychangingenvironments.©2017 ElsevierGmbH.All rightsreserved.1.IntroductionCo

10、mputervisionapplicationshavebeenpartofindustryoperationsformorethanfourdecades.Theyarehelpfulinfastingtheindustrialprocess,automatedmanydifficulttasksandalsohelpinfindingminordefects[1].Manyapplicationswereusinghandgestu

11、rerecognitiontechniquesfordifferentpurposesashandgestureprovidesanaturalwaytocommunicatewithmachines[2–5].Theseapplicationswereinitiallybasedonwiredgloves,colorstripsorchemicalstodetectaregionofinterest(ROI)smoothly.Asur

12、veyofdifferentdevicesandtechniquesusedforhandgesturerecognitioncanbefoundoutin[6].Tomakehuman-machinecommunicationmoreeffective,gesturerecognitionofbarehandhadintroducedwhereanypersoncouldusehishandinnaturalposition[7–10

13、].Alotofworkhasbeendoneintheareaofnaturalhandgesturerecognitiontomakeitmorerobust.Currently,thiskindofapplications[11]andgamesaremorepopularasauserfeelcomfortableanddon’tneedanythingtooperatethevision-basedsystem.Recentl

14、ytherehasbeenagrowinginterestinthefieldoflightintensity-invariantobjectrecognition.Foradvancedapplicationsinthisarea,onecansetupasysteminthelaboratorywithidealconditions.However,inpracticalscenarios,the? Correspondingaut

15、hor.E-mailaddresses:dr.ankit@ieee.org(A.Chaudhary),jagdish@ceeri.res.in(J.L.Raheja).https://doi.org/10.1016/j.ijleo.2017.11.1580030-4026/©2017ElsevierGmbH.Allrightsreserved.A.Chaudhary,J.L.Raheja/Optik159(2018)283–2

16、94285OrientationHistogram(OH)techniqueforfeatureextractionwasdevelopedbyMcConnell[23].Themajoradvantageofthistechniqueisthatitissimpleandrobusttolightingchanges[24].Ifwefollowpixel-intensitiesapproach,certainproblemsaris

17、eduetovaryingillumination[16].Ifpixelbypixelproximityforthesamegestureistakenfromtwodifferentimages,whiletheilluminationconditionsaredifferent,thedistancebetweenthemwouldbelarge.Insuchscenarios,thepictureitselfactsasafea

18、turevector.Themainmotivationforusingtheorientationhistogramistherequirementforlightningandpositioninvariance.Anotherimportantaspectofthegesturerecognitionisthatirrespectiveoftheorientationofthehandindifferentimages,forth

19、esamegesturewemustgetthesameoutput.Thiscanbedonebyformingalocalhistogramforlocalorientations[25].Hence,thisapproachmustberobustforilluminationchangesanditmustalsooffertranslationalinvariance.Wewouldalsoneedthegesturestob

20、ethesameregardlessofwheretheyoccurintheimage.Thepixellevelsofthehandwouldvaryconsiderablywithrespecttolight,ontheotherhand,theorientationvaluesremainfairlyconstant.We needtocalculatethelocalorientationfromthedirectionof

21、theimagegradient.Thelocalorientationangle?willbeafunctionofpositionxandy,andtheimageintensitiesI(x,y).Theangle?isdefinedas:?(x,y)=arctan[I(x,y)-I(x-1, y),I(x, y)-I(x,y-1)](1)NowformavectorФofNelements,withtheith elemen

22、tshowingthenumberoforientationelements?(x,y)betweentheangles 360 ?N [i? 12]and 360 ?N [i+ 12 ].WhereФisdefinedas:Ф(i)=?x,y{ 10 if|?(x,y)? 360 ?N i|< 360 ?N otherwise (2)3.LightinvariantsystemThehandgesturerecognitio

23、nsystemworksontheprincipleofthe2Dcomputervision.Thesystemhasaninterfacewithasmallcamerawhichcapturesusers’gestures.Theinputtothesystemisimageframeofmovinghandinfrontofacameracapturedasalivevideo.Thepreprocessingofimagefr

24、amewasdoneasdiscussedin[26]withreal-timeconstraint.TheresultingimagewouldbetheROI,onlyhandgestureimage.Nowwedoneedtofindoutfeaturevectorsfromtheinputimagetorecognizeitwiththehelpofclassifier.Asthissystemwasforresearchpur

25、poseonly,we tookonlysixdifferentgesturesinthedatasetasmanyresearchersalsohavetestedtheirmethodswithsixgesturesinthepast[21].Thesesixdifferentgestureswhichwereusedinthisresearch,areshowninFig.2.Thesystemisexpandabletohav

26、emanydifferenttypesofgestures,ifneeded.Theimagesofeachgesturewerecollectedwithdifferentskincolorandlightintensity.Oncethegesturewouldgetrecognizedthecorrespondingactiontakesplacewhichwasassociatedwithit.Inoursystem,theau

27、diodescriptionofthematchedgesturewasattachedasthecorrespondingaction.Inrecognitionofthegesture,theaudiofilecorrespondingtotherecognizedgesturewouldbeplayed.Theimplementationofthesystemisdiscussedindifferentsteps:3.1.Data

28、collectionfortrainingpurposeThetrainingimagesfortheANNwerecollectedfromdifferentsourcesincludingonlinesearchandmanuallycollection.Thiswastoensuretherobustnessofthemethodasimagesfromdifferentsourceswouldcontaindifferentsk

29、incolor,differentlightintensity,anddifferenthandshape.Skincolorhasthepropertythatitlooksdifferentindifferentlightintensities.Weused14differentimagesforeachgesturetotrainANN.3.2.Pre-processingofimagesWe needtogettheROIfr

30、omtheimageswiththerandombackgroundforthetrainingpurposeandfortherecognition.IftheimageshaveonlyROIthenthetrainingoftheANNwouldbebetter.Allimages,usedfortraining,wereconvertedintosameresolutionasthesystemcamerawascapturin

31、gtheuser’sgesture[26].3.3.FeatureextractionTotraintheANNandforgesturerecognition,thefeaturesneedtobeextractedfromthepre-processedimages.Thealgorithmusedforfeatureextractionresultsinanorientationhistogramforagivengesture.

32、Thesamealgorithmwasappliedforallthegesturespresentinthedatabaseinordertogenerateatrainingpattern.Thesetrainingpatternswerestoredandappliedtotheneuralnetworktotrainit.Forgesturerecognitionpurposethesamealgorithmwasapplied

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論