總結(jié)求矩陣的逆矩陣的方法_第1頁(yè)
已閱讀1頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、 總結(jié)求矩陣的逆矩陣的方法 總結(jié)求矩陣的逆矩陣的方法課 程 名 稱: 專 業(yè) 班 級(jí): 成 員 組 成: 聯(lián) 系 方 式: 正文: 正文:1 .引言 引言:矩陣是線性代數(shù)的主要內(nèi)容,很多實(shí)際問題用矩陣的思想去解既簡(jiǎn)單又 快捷.逆矩陣又是矩陣?yán)碚摰暮苤匾膬?nèi)容, 逆矩陣的求法自

2、然也就成為線性代 數(shù)研究的主要內(nèi)容之一.本文將給出幾種求逆矩陣的方法.2. 2.求矩陣的逆矩陣的方法總結(jié): 求矩陣的逆矩陣的方法總結(jié):2.1 2.1 矩陣的基本概念矩陣,是由個(gè)數(shù)組成的一個(gè)行列的矩形表格,通常用大寫字母表示,組成矩陣的每一個(gè)數(shù),均稱為矩陣的元素,通常用小寫字母其元素表示,其中下標(biāo)都是正整數(shù),他們表示該元素在矩陣中的位置。比如,或表示一個(gè)矩陣,下標(biāo)表示元素位于該矩陣的第 行、第列。元素全為零的矩陣稱為零矩陣。特別地,一

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論