5、量子力學與狹義相對論_第1頁
已閱讀1頁,還剩4頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、5、量子力學與狹義相對論之間的不協(xié)調物理規(guī)律中,物質的變換總是根據當前狀態(tài)的各種參數決定的,沒有對歷史的記憶,而 且由于光速最大原理,能影響一個質點運動的信息只能是這個點鄰近無窮小范圍內的信息, 這兩個特點決定了微分方程適用于大多數的物理規(guī)律描述。用微分來描述瞬時的變化率,實 際上是一個極限的過程,能對瞬時變化給出很好的描述。就目前來看,用微分來描述變化率 是最好的方法。物理上的“定域性”原則現(xiàn)在已經受到了越來越多的挑戰(zhàn),基本可以認為真

2、 實的物理至少在一定程度和能級條件下是不滿足定域性原則的,這是一系列物理實驗的論證 結果。從物理上來說,能用微分方程描述的另一個潛在依據就是不存在穩(wěn)定的時間與空間最 小單元。如果存在最小單元,在這個單元中的一切不可取分,狀態(tài)不可分辨,那么最后我們 要用的就可能是差分函數與差分方程,而不是微分方程。大量實驗證實,非定域性是量子 力學的一個基本屬性,但是非定域性將意味著超光速傳播,這與狹義相對論的基本假設矛盾。 當前,量子引力理論中的超弦理

3、論的時空背景相關性,與圈量子引力理論中的時空背景無關 性同時存在,是物理學中潛在的對于時空本質不同態(tài)度的一次大碰撞,這種困難預示著物理 學需要一次概念的變革,首當其沖的就是時空。時空觀念是物理學中最基本的也是最重要的 概念,不同的時空觀念將導致不同的理論研究方向,任何對于時空概念的更新和深化,勢必 對整個物理學產生巨大的革命性的影響。作為量子論和狹義相對論的結合的量子電動力學和量子場論更是如此。一方面,量子電 動力學取得了巨大成功,可以

4、給出與實驗精確符合的微擾論計算結果,例如關于電子反常磁 矩的微擾論計算結果與實驗結果可以符合到十幾位有效數字;格拉肖-溫伯格-薩拉姆 (Glashow-Weinberg-Salam)的弱電模型在很大程度上統(tǒng)一了微觀尺度上的電磁作用和弱作 用,在相當于1000倍質子質量的能量尺度下與幾乎所有實驗符合;包括量子色動力學在內 的標準模型對于強作用的一些性質也能給出令人滿意的結果等。另一方面,與實驗精確符合 的微擾論計算在理論上卻并不成立,微擾

5、級數本身一定會發(fā)散。標準模型中有20幾個自由 參數需要實驗輸入,其中包括一些極重要的無量綱參數,如精細結構常數、以介子與電子質 量之比等。為了減少參數的大統(tǒng)一理論或超對稱大統(tǒng)一理論,往往會導致質子衰變??墒牵?實驗上一直沒有觀測到質子衰變現(xiàn)象,也沒有觀測到超對稱粒子,這是為什么?超對稱如何 破缺?為什么有夸克禁閉和色禁閉?為什么夸克質量譜中存在極大的質量間隙?為什么會 有三代夸克-輕子及其質譜?理論上作用極大的“真空”到底是什么?理論上

6、計算的“真空” 能量,與宇宙學常數觀測值相應的“真空能”相比,高出幾十到一百多個數量級,這又是為 什么?這些問題都難以回答。諾貝爾獎獲得者阿爾文(H.O.G.Alfven)認為相動能算符和動量算符的不一致體現(xiàn)在物理期望值上,但物理期望值的不同是自然的, 因為所謂物理期望值本是對所有可能取值的平均,而動能和動量的關系是非線性的,簡單 的統(tǒng)計學知識可以知道,非線性的量的統(tǒng)計平均本就不是一一對應的。物理期望值只反映 了當一個測量多次重復的時候

7、的一種統(tǒng)計結果(基于量子幾率原理的統(tǒng)計,量子力學四大 基本假設之一),并不是物理實在,而量子理論的物理實在反映在塌縮前的概率波上,并 不反映在統(tǒng)計結果上。2. 量子力學在曲線坐標系中一直無法合理地定義動量算符。此問題十幾年前在國內《大 學物理》上有許多討論,但無果而終。曲線坐標系絕大多數情況下都是非正交的,此時需要使用的是一般微分流形上的量子 力學。雖然此時時空是平直的,但非正交的取消坐標系依然會給出非平庸的聯(lián)絡,從而采用 一般正交的笛

8、卡爾坐標系的方法給出的計算結果本就有問題。而對于一般坐標系(也即聯(lián)絡 非常零的坐標系),經典物理層面我們很清楚應該怎么做,但量子體系如何建立依然是一門 正在研究的問題,這牽扯到一般微分流形上的纖維叢的量子化問題,是一個正在進行中的課 題。所以,不要以為換一個坐標系問題很簡單,這個問題即便在經典物理中,也是在廣義相 對論建立以后才利用微分幾何的語言研究清楚的。3. 將動量算符作用于非本征態(tài)波函數,得到非本征值都是復數。坐標空間中動量算符

9、的平均值也是復數,在物理上沒有意義(除非等于零】為了解決復數非本征值和復數平均 值問題,現(xiàn)有量子力學將任意波函數用算符的本征態(tài)波函數展開,實際上將算符的平均值 變換到動量空間計算。其結果是,雖然動量算符的復數平均值問題被消除,但坐標算符的 復數平均值問題又出現(xiàn)。問題實際上沒有被解決,只是被轉移。在直角坐標系中,角動量 算符沒有本征態(tài)波函數和本征值,將角動量算符作用任意波函數,得到的都是虛數。直角 坐標系中角動量算符沒有意義嗎?反之,動能

10、算符對任意波函數作用結果都是實數,我們 就沒有必要將任意波函數按它的本征函數召開。氫原子定態(tài)波函數就是一個例子,它們都 不是動能算符的本征函數。首先,量子態(tài)可以分解為多個本征態(tài)的混合,但無論本征態(tài)如何混合,對應的量子態(tài)是 固定的。其次,量子態(tài)天然地具有不確定性與互補性(互補原理是量子四大基本假設之一, 衍生而出的就是不確定關系),因此一個固定的量子態(tài)的所有可觀測量未必都是實數,這取 決于這個量子態(tài)究竟是什么狀態(tài)。第三,在宏觀物理中,我們

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論