不可壓多松弛格子Boltzmann方法的研究及其應(yīng)用.pdf_第1頁
已閱讀1頁,還剩122頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、無論是燃燒還是氣固兩相流的計(jì)算,都有一個(gè)共同的研究領(lǐng)域--流體力學(xué),對(duì)流體力學(xué)的研究是研究復(fù)雜物理現(xiàn)象的基礎(chǔ)。格子Boltzmann方法(LBM)是上世紀(jì)80年代末從格子氣自動(dòng)機(jī)(LGCA)發(fā)展而來的一種新的計(jì)算流體數(shù)值方法。
   與傳統(tǒng)數(shù)值方法的研究視角不同,LBM是從微觀粒子運(yùn)動(dòng)的層面來對(duì)流體進(jìn)行數(shù)值模擬的。LBM的描述對(duì)象是單一粒子的分布函數(shù),分布函數(shù)的控制方程為經(jīng)典Boltzmann方程。而LB方程則是Boltzman

2、n方程在相空間的離散形式,這種離散包括粒子速度空間、時(shí)間空間的離散。通過Chapman-Enskog展開,利用物理量的守恒關(guān)系,在滿足小Knudsen數(shù)和小Mach數(shù)條件下,可以將LB方程還原到描述流體運(yùn)動(dòng)的宏觀流體力學(xué)方程。從而,我們可以通過數(shù)值模擬粒子的分布來達(dá)到描述宏觀流體運(yùn)動(dòng)的目的。
   格子Boltzmann方法是與現(xiàn)代計(jì)算機(jī)匹配的高效新算法,它具有天然并行性、結(jié)構(gòu)簡(jiǎn)單、易于編程的優(yōu)點(diǎn),在流體力學(xué)等領(lǐng)域得到了廣泛的應(yīng)

3、用,已經(jīng)成為研究非線性現(xiàn)象和復(fù)雜系統(tǒng)的重要方法之一。
   但是,格子Boltzmann方法至今還有不完善之處,比如外力的處理,不可壓多松弛模型的研究。該方法雖然已經(jīng)在多相流、多孔介質(zhì)流、懸浮粒子流、磁流體力學(xué)等領(lǐng)域取得了很大的成功,但是目前在微重力流體力學(xué)中的應(yīng)用研究甚少。另外,盡管LB方法程序簡(jiǎn)潔,但是隨著模擬問題的復(fù)雜性和人們對(duì)模擬結(jié)果精度要求的提高,使得計(jì)算量劇增,因此對(duì)程序的優(yōu)化至關(guān)重要,它直接影響著LB方法在工程實(shí)際

4、中的應(yīng)用。因此,本文就以上提出的幾個(gè)方面做了有益的嘗試,為相關(guān)工作的深入展開奠定了必要的基礎(chǔ)。
   首先,我們構(gòu)造了一種求解含外力項(xiàng)的Navie-Stokes方程的格子Boltzmann模型。不同于已有的模型,將外力的空間導(dǎo)數(shù)加到演化方程中,通過Chapman— Enskog(C—E)展開,不需要多余的假設(shè)可以恢復(fù)到宏觀方程。詳細(xì)討論了三種離散格式,可以證明,現(xiàn)有的一些模型是本文提出模型的特例。數(shù)值實(shí)驗(yàn)結(jié)果表明,我們提出的方法

5、具有二階數(shù)值精度和較好的數(shù)值穩(wěn)定性。
   其次,提出了二維九速和八速不可壓多松弛模型,該模型基于Guo提出的LBGK模型。通過Gram—Schimidt正交化過程,構(gòu)造了八速模型的線性變換矩陣,該矩陣滿足Ginzburg給出的通用的格式。通過多尺度展開,兩類模型都可以恢復(fù)到不可壓的宏觀方程,該模型消除了已有模型中存在的可壓縮效應(yīng)。對(duì)各種問題的數(shù)值實(shí)驗(yàn)結(jié)果表明,模型的數(shù)值穩(wěn)定性很好。為模擬不可壓流動(dòng)提供一種數(shù)值穩(wěn)定性較好的方法。

6、
   第三,對(duì)于微重力流體力學(xué)中一類重要的流動(dòng)一一熱毛細(xì)對(duì)流,我們構(gòu)造了雙分布的LB模型。采用非平衡態(tài)外推格式使得邊界處理變得極其簡(jiǎn)單可行。對(duì)二維上表面是自由邊界的矩形容器內(nèi)的熔體做數(shù)值實(shí)驗(yàn),驗(yàn)證了該模型的正確性。因此,LB在微流體力學(xué)中的應(yīng)用是可行的,為研究微重力環(huán)境下的各種流體提供了一種新的介觀方法。
   第四,以經(jīng)典算例一方腔流為例,對(duì)格子Boltzmann方法的核心代碼進(jìn)行了優(yōu)化,主要做了時(shí)間和空間上的優(yōu)化,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論