版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、分類(lèi)號(hào):TN911.7 密級(jí):公開(kāi)UDC:621.39 學(xué)校代碼:11065碩士學(xué)位論文神經(jīng)隨機(jī)匯池網(wǎng)絡(luò)的信息傳遞研究 神經(jīng)隨機(jī)匯池網(wǎng)絡(luò)的信息傳遞研究王慧指 導(dǎo) 教 師 段法兵教授學(xué)科專(zhuān)業(yè)名稱(chēng) 系 統(tǒng) 理 論論文答辯日期 2017 年 5 月 24 日IIAbstractThis thesis employs the measures of the mean mutual information and thestimulus-spec
2、ific information to explore the performance of information transmissionof the stochastic pooling networks composed of saturating synaptic neurons or theIntegrate-and-Fire neurons. It is noted that the stimuli are the det
3、erministic aperiodicor the speech signals, while the internal noise is with Gamma or Gaussiandistributions. First, in saturating synaptic neural networks, it applies the aperiodicsignal as the input signal, selects Gamma
4、 noise to simulate the internal noise in nervecells. The results of the measure of the mean mutual information and thestimulus-specific information demonstrate that the noise-enhanced effect ofinformation transmission ap
5、pears in the heterogeneous stochastic pooling networkswith multi-synaptic excitatory and inhibitory pathways. Second, we also take themeasure of the mean mutual information and the stimulus-specific information toexplore
6、 the stochastic resonance effect in the Integrate-and-Fire neural stochasticpooling networks by transmitting the speech signal. The main purpose is to analyzethe effect of information transmission caused by noise intensi
7、ty and the number of theIntegrate-and-Fire neurons. Third, according to the actual data experiment, it provesthat, as the internal noise intensity increases, the neurons have a better response to theinput signal, wherein
8、 the mean mutual information can reach a maximum value in acertain range of noise intensity. It is also shown that the stimulus-specific informationcan measure the coding efficiency in each component of the input signal
9、via theinternal noise enhancement clearly. We argue that the present results are meaningfulto the information-carrying signal transmission in the neurons in future particularly.Keywords: Stochastic pooling networks; Mean
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 神經(jīng)元的信息傳遞
- 隨機(jī)神經(jīng)網(wǎng)絡(luò)
- 隨機(jī)神經(jīng)網(wǎng)絡(luò)的研究及應(yīng)用.pdf
- 基于BP神經(jīng)網(wǎng)絡(luò)的林木碳匯計(jì)量算法研究.pdf
- 隨機(jī)神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性.pdf
- 隨機(jī)神經(jīng)網(wǎng)絡(luò)模型的動(dòng)力學(xué)研究.pdf
- 隨機(jī)神經(jīng)網(wǎng)絡(luò)的同步與狀態(tài)估計(jì).pdf
- 感知神經(jīng)元網(wǎng)絡(luò)的隨機(jī)共振現(xiàn)象研究.pdf
- 時(shí)滯隨機(jī)神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性研究.pdf
- 參數(shù)調(diào)諧隨機(jī)共振(PSR)的神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)研究.pdf
- 中立型隨機(jī)系統(tǒng)與隨機(jī)區(qū)間神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性.pdf
- 基于隨機(jī)權(quán)神經(jīng)網(wǎng)絡(luò)的重置多分類(lèi)算法研究.pdf
- 切換隨機(jī)非線性系統(tǒng)的神經(jīng)網(wǎng)絡(luò)控制研究.pdf
- 基于共軛梯度的隨機(jī)賦權(quán)神經(jīng)網(wǎng)絡(luò).pdf
- 深度卷積神經(jīng)網(wǎng)絡(luò)中基于序的池化方法研究.pdf
- 隨機(jī)人工神經(jīng)網(wǎng)絡(luò)系統(tǒng)漸近行為研究.pdf
- 應(yīng)用多通道自回歸模型對(duì)癲癇神經(jīng)信息傳遞路徑的研究.pdf
- 隨機(jī)回歸神經(jīng)網(wǎng)絡(luò)的動(dòng)力學(xué)行為研究.pdf
- 閾值網(wǎng)絡(luò)中基于互信息的隨機(jī)共振研究.pdf
- 基于神經(jīng)網(wǎng)絡(luò)的信息挖掘模型研究.pdf
評(píng)論
0/150
提交評(píng)論