版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、Resource availability often changes continuously in the cloud environment. There-fore,schedulers demand resource prediction help to make productive scheduling deci-sion. Comparatively,the scheduler needs a long time load
2、 prediction information to guide scheduling process because in cloud computing tasks usually take a significant amount of time to execute,even if most proposed prediction approaches are directed to one step ahead or shor
3、t term load prediction. As sometimes resources may be distributed and heterogeneous,those proposed methods could not lead to the good outcome when making long-term prediction. Most of the resource prediction methods were
4、 designed with the goal of getting the prediction much accurate. However,in some cases,priorities are given to long-term prediction.Anomaly detection techniques have been developed for some specific fields,while others w
5、ere developed for general purpose. By applying those techniques we can judge and differentiate whether a data is representing a normal or anomalous behavior. This happens when an anomaly detection approach define a regio
6、n that is demonstrating a normal behavior and provides a region where the data does not belong to the defined normal area as anomaly. Some techniques detect anomalies in an unlabeled test data set under supposition that
7、the majority of instances in the data are normal by investigating instances. Other techniques demand a data set that has been labeled as normal or abnormal and use training as classifier. There are also other techniques
8、that construct a model showing normal behavior from given normal training data set.Researches have been carried out in different features (CPU load,Memory us-age,disk spaces and network tra?c). Many prediction models wer
9、e evolved to predict single or multidimensional data. In this research,we will mainly focus on finding out new models and analyze prediction behavior from different multi-resource and deter-mine the highest accuracy. In
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于粒子濾波的金融數(shù)據(jù)預(yù)測研究.pdf
- 變形測量數(shù)據(jù)預(yù)測模型的優(yōu)化研究.pdf
- 財稅數(shù)據(jù)倉庫結(jié)構(gòu)及部門預(yù)算數(shù)據(jù)預(yù)測研究.pdf
- 數(shù)據(jù)流頻繁模式挖掘及數(shù)據(jù)預(yù)測算法研究.pdf
- 基于數(shù)據(jù)挖掘的軟件缺陷數(shù)據(jù)預(yù)測方法研究.pdf
- 通信系統(tǒng)地理網(wǎng)格評價模型及數(shù)據(jù)預(yù)測.pdf
- 移動數(shù)據(jù)預(yù)測模型的研究及平臺數(shù)據(jù)管理模塊的完善.pdf
- 公交動態(tài)調(diào)度系統(tǒng)中的數(shù)據(jù)預(yù)測方法.pdf
- 基于數(shù)據(jù)挖掘技術(shù)的穩(wěn)態(tài)電能質(zhì)量數(shù)據(jù)預(yù)測預(yù)警研究.pdf
- 多維數(shù)據(jù)異常點識別方法的研究.pdf
- 煤礦生產(chǎn)安全時序數(shù)據(jù)預(yù)測方法研究.pdf
- 面向列車客票數(shù)據(jù)預(yù)測分析及特征提取方法的研究.pdf
- 白鶴發(fā)電廠日報數(shù)據(jù)預(yù)測及分析研究.pdf
- 模糊神經(jīng)網(wǎng)絡(luò)在數(shù)據(jù)預(yù)測領(lǐng)域的應(yīng)用.pdf
- 基于BP和RBF神經(jīng)網(wǎng)絡(luò)的數(shù)據(jù)預(yù)測方法研究.pdf
- 轉(zhuǎn)導(dǎo)支持向量機在數(shù)據(jù)預(yù)測中的應(yīng)用.pdf
- 基于PHP的校園電能監(jiān)測平臺研究與數(shù)據(jù)預(yù)測.pdf
- 基于BP神經(jīng)網(wǎng)絡(luò)的數(shù)據(jù)預(yù)測及報表生成技術(shù)研究.pdf
- 負荷預(yù)測多維數(shù)據(jù)模型及實視圖研究.pdf
- 基于時間序列分析的隧道傳感器數(shù)據(jù)預(yù)測研究.pdf
評論
0/150
提交評論