小波分解在非平穩(wěn)時(shí)間序列預(yù)測(cè)中的應(yīng)用.pdf_第1頁(yè)
已閱讀1頁(yè),還剩33頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、上海交通大學(xué)碩士學(xué)位論文小波分解在非平穩(wěn)時(shí)間序列預(yù)測(cè)中的應(yīng)用姓名:鄧凱旭申請(qǐng)學(xué)位級(jí)別:碩士專業(yè):計(jì)算數(shù)學(xué)指導(dǎo)教師:宋寶瑞200501015Applying Wavelet Decomposition in the Forecasting of Non- Stationary Time Series ABSTRCT Wavelet analysis is a great development in mat

2、hematics it overcomes Fourier’s limitation which cant’s analyze the signal in time and frequency at the same time and has the advantage of extracting characteristic of signal. In this thesis, we use this chara

3、cteristic of the wavelet to the forecasting of non- stationary time series. Before this, we often use statistical method to forecast the time series. But when the time series is non- stationary, the effect is

4、 not very good. We choose some proper wavelet function t o decomposing the series to a fix arrange. We use the wavelet decomposition to improve the station of the time series. And then, we use the statistic

5、al method to forecast the time series and get the result by reconstruction. We can see that the effect of the wavelet method is better then the statistical method because the station of the time seri

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論