土建外文翻譯_第1頁(yè)
已閱讀1頁(yè),還剩32頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p>  2004年8月1~6號(hào)</p><p>  基于性能的抗震設(shè)計(jì)方法和復(fù)合屈曲約束支撐框架的性能</p><p><b>  摘要</b></p><p>  屈曲約束支撐框架的概念相對(duì)較為新穎,近年來(lái)它的應(yīng)用在美國(guó)、日本和臺(tái)灣得到增強(qiáng)。然而,對(duì)于一般實(shí)踐的詳細(xì)設(shè)計(jì)規(guī)則當(dāng)前還處于發(fā)展階段。從2002年夏開(kāi)始,密歇根大學(xué)的研究

2、者已經(jīng)開(kāi)始和臺(tái)灣地震工程研究中心的隊(duì)伍展開(kāi)合作,在設(shè)計(jì)、分析和應(yīng)用模擬動(dòng)力測(cè)試方法對(duì)這種框架進(jìn)行全方位測(cè)試等方面進(jìn)行聯(lián)合研究。</p><p>  選定的結(jié)構(gòu)是由混凝土灌注的鋼管圓柱、鋼梁和復(fù)合屈曲約束支撐組成的三層三跨的框架。這種框架是應(yīng)用密歇根大學(xué)最近發(fā)展的基于能量的塑性設(shè)計(jì)程序設(shè)計(jì)而成的。這種方法利用了選定的目標(biāo)作業(yè)份額(對(duì)這個(gè)框架在50年中2.0%到10%荷載50年設(shè)計(jì)范圍中的2.5%到2%)和總體的屈曲

3、原理。由于在端部連接和支撐的鋼殼之間設(shè)計(jì)空隙的更多精確控制的需要,屈曲約束支撐框架是對(duì)這種最新成熟設(shè)計(jì)方法的最好候選者。</p><p>  這篇文章簡(jiǎn)要介紹了由密歇根大學(xué)研究的基于能力原理的設(shè)計(jì)方法和由臺(tái)灣地震工程研究中心的科研小組為計(jì)算框架底部剪力的設(shè)計(jì)計(jì)算結(jié)果而采用的基于位移的設(shè)計(jì)程序模式,并對(duì)兩種方法對(duì)于一次臺(tái)灣地震而設(shè)計(jì)的框架無(wú)彈性響應(yīng)結(jié)果進(jìn)行了對(duì)比。同樣的框架也在美國(guó)進(jìn)行了設(shè)計(jì),并依據(jù)美國(guó)的標(biāo)準(zhǔn)在地面

4、運(yùn)動(dòng)下進(jìn)行了分析。由密歇根大學(xué)設(shè)計(jì)的框架對(duì)臺(tái)灣和美國(guó)的地面運(yùn)動(dòng)都基本符合動(dòng)力響應(yīng)。</p><p><b>  介紹</b></p><p>  屈曲約束支撐極好的地震反應(yīng)激勵(lì)了臺(tái)灣地震工程研究中心的實(shí)驗(yàn)計(jì)劃,也鼓勵(lì)了密歇根大學(xué)的研究者們對(duì)分析和設(shè)計(jì)之間結(jié)合的進(jìn)一步研究。在這個(gè)計(jì)劃中,屈曲約束支撐為2003年10月在臺(tái)灣地震工程研究中心進(jìn)行模擬動(dòng)力荷載實(shí)驗(yàn)的三層三跨框

5、架提供了最基本的抗力結(jié)構(gòu)。原型建筑的結(jié)構(gòu)布置如圖一a所示,實(shí)驗(yàn)框架的立面如圖一b所示。針對(duì)實(shí)驗(yàn)?zāi)康?,假定這些跨中的兩個(gè)能夠抵抗作用在一個(gè)三層建筑原型的全部地震力。地震力作用的框架在圖一a中用粗線表示。</p><p>  圖一:(a)圓形建筑的平面布置圖 (b)測(cè)試框架圖</p><p><b>  測(cè)試框架描述</b></p>&

6、lt;p>  本框架通過(guò)兩個(gè)互相分離的機(jī)構(gòu)來(lái)抵抗地震荷載。最基本的抵抗力由框架中主要跨(圖一b)的屈曲約束支撐來(lái)提供。這一跨被設(shè)計(jì)為一個(gè)完全的支撐框架,而所有的梁柱連接和支撐與柱間的連接作為最簡(jiǎn)單的連接。在每一個(gè)地震作用的框架中,支撐被設(shè)計(jì)為抵抗地震作用力的80%,剩余的20%有外側(cè)的兩跨來(lái)抵抗。外側(cè)兩跨作為瞬間框架,同時(shí)外側(cè)梁柱接頭作為瞬間連接。所有柱子都由混凝土灌注鋼管組成。內(nèi)外側(cè)柱子采用不同的型材,隨著建筑物高度的增加尺寸保

7、持不變。梁上采用大法蘭。各層采用不同尺寸的梁,而在同一層上的所有跨都采用相同尺寸的梁。</p><p><b>  屈曲約束支撐的特性</b></p><p>  屈曲約束支撐的特色是在混凝土灌注鋼管中插入一個(gè)鋼芯(圖二a)鋼芯和混凝土灌注鋼管由于鋼芯表面的脫膠材料而保持相互分離。灌注的混凝土和鋼管的作用是防止鋼芯屈曲,以至于在大位移撤消后支撐有一個(gè)很好的荷載位移響應(yīng)

8、。脫膠材料能夠保證作用在屈曲支撐上的力僅僅由鋼芯承載,而不會(huì)作用在周圍材料上。在臺(tái)灣的地震工程研究中心,各種不同配置的屈曲約束支撐在大周期軸力作用下進(jìn)行試驗(yàn),從而挑選出最適宜實(shí)驗(yàn)框架的配置(圖二a)一個(gè)挑選出的屈曲約束支撐的配置對(duì)應(yīng)的典型荷載位移響應(yīng)如圖二b所示。正如看到的,得到了整個(gè)的滯后線圈和完美的能量擴(kuò)散。然而,要注意的是壓縮的屈服荷載要比拉伸的高出10%左右。這一點(diǎn)要在框架設(shè)計(jì)中進(jìn)行說(shuō)明。</p><p>

9、;  圖二:(a)采用的屈曲約束支撐結(jié)構(gòu) (b)屈曲約束支撐的典型荷載位移響應(yīng)</p><p><b>  設(shè)計(jì)要素</b></p><p>  為滿足一般的性能要求,依據(jù)不同的設(shè)計(jì)程序設(shè)計(jì)了三個(gè)原型框架來(lái)進(jìn)行對(duì)比。第一個(gè)框架由臺(tái)灣的地震工程研究中心的科研小組設(shè)計(jì),這個(gè)框架的底部剪力計(jì)算依據(jù)基于位移的多模式抗震設(shè)計(jì)程序,這個(gè)指導(dǎo)方針還在2002年規(guī)定了臺(tái)灣的

10、抗震設(shè)計(jì)規(guī)則。這個(gè)框架是根據(jù)彈性方法設(shè)計(jì)的。第二個(gè)框架(密歇根大學(xué)設(shè)計(jì)的第一個(gè)框架)由密歇根大學(xué)的團(tuán)隊(duì)設(shè)計(jì)。他們的底部剪力假定了臺(tái)灣地震工程研究中心的結(jié)果,但他們采用了最近形成的塑性設(shè)計(jì)方法。第三個(gè)框架(密歇根大學(xué)的第二個(gè)框架)在計(jì)算底部剪力時(shí)采用了由密歇根大學(xué)研究的基于能量的簡(jiǎn)單程序??蚣艿脑O(shè)計(jì)采用了同密歇根大學(xué)第一個(gè)框架一樣的塑性設(shè)計(jì)方法。</p><p>  基本設(shè)計(jì)參數(shù)由臺(tái)灣地震工程研究中心的科研小組依據(jù)

11、2002年起草的臺(tái)灣抗震設(shè)計(jì)規(guī)則選定。每一層的地震作用平均的分配到到兩個(gè)抗震框架上。作用在每層上的地震作用如下,</p><p>  一層和二層:714千磅 三層564千磅。</p><p>  為了計(jì)算原型建筑的設(shè)計(jì)底部剪力采用了兩種不同的性能標(biāo)準(zhǔn),并把其中較大的結(jié)果作為實(shí)驗(yàn)框架的設(shè)計(jì)依據(jù)。根據(jù)第一個(gè)性能標(biāo)準(zhǔn)(保護(hù)準(zhǔn)則),當(dāng)建筑遭受在未來(lái)50年超過(guò)10%的地震烈度(1

12、0/50)時(shí),最大頂部位移設(shè)定為0.02弧度。根據(jù)第二個(gè)性能標(biāo)準(zhǔn)(預(yù)防準(zhǔn)則),在建筑物遭受2/50的地震作用時(shí),最大頂部位移設(shè)定為0.025弧度。10/50和2/50這些地震事件會(huì)通過(guò)適當(dāng)?shù)囊蛩剡M(jìn)行測(cè)量來(lái)表示為真實(shí)的地面運(yùn)動(dòng)。這種測(cè)量是通過(guò)在周期為一秒的SDOF系統(tǒng)中考慮5%的衰減模擬加速度譜線進(jìn)行的。這些測(cè)量因素同樣由相同的加速度譜線決定,并與臺(tái)灣地震規(guī)則中規(guī)定的在堅(jiān)硬的巖石場(chǎng)地10/50和2/50的地震事件相關(guān)規(guī)則相對(duì)應(yīng)。這兩個(gè)測(cè)試

13、結(jié)果分別有0.461g和0.622g的地震加速度。</p><p>  根據(jù)框架的設(shè)計(jì)原則和簡(jiǎn)單性能分析,整個(gè)底部剪力將被分配到三個(gè)樓層上。每層上的力將按下面公式進(jìn)行計(jì)算。</p><p><b>  (1)</b></p><p>  mi和δi分別表示各層的質(zhì)量和位移,Vd表示總的設(shè)計(jì)底部剪力。各層的地震力的相對(duì)值如下:</p>

14、<p>  一層:0.11 二層:0.365 三層:0.525</p><p><b>  設(shè)計(jì)底部剪力</b></p><p><b>  臺(tái)灣設(shè)計(jì)方案</b></p><p>  這一部分將簡(jiǎn)單介紹臺(tái)灣地震工程研究中心對(duì)底部剪力的設(shè)計(jì),更加詳細(xì)的介紹會(huì)在其他地方看到(文獻(xiàn)1)。</p&

15、gt;<p>  第一步,將框架理想化為有三個(gè)自由度的MDOF體系。三種模式的模型影響因素以及模型的質(zhì)量和模型各層的位移都將進(jìn)行計(jì)算。對(duì)于這個(gè)特殊的框架,由于第二和第三中模式的貢獻(xiàn)率(MCF分別為0.008和0.002)相對(duì)于第一模式(MCF=0.99)來(lái)說(shuō)無(wú)關(guān)緊要,所以只把第一模式作為實(shí)驗(yàn)?zāi)繕?biāo)。因此,在第一模式下的第三樓層位移將被作為與模型目標(biāo)頂部位移相關(guān)的有效系統(tǒng)位移δeff。</p><p>

16、  第二步,計(jì)算框架第一模式的延展性。因?yàn)橹慰蚣艹惺芰?0%的地震作用,所以有效系統(tǒng)的屈曲位移根據(jù)支撐點(diǎn)的屈曲位移計(jì)算,再增加25%作為瞬間框架的影響。根據(jù)各層的最大位移,計(jì)算各層的延展性,然后取平均值作為系統(tǒng)的有效延展性。采用這種延展性和有效目標(biāo)位移δeff,系統(tǒng)的有效周期將通過(guò)非彈性地面運(yùn)動(dòng)譜線得出。根據(jù)這個(gè)時(shí)間周期,計(jì)算出系統(tǒng)相應(yīng)的有效堅(jiān)硬度Keff。</p><p>  最后,目標(biāo)位移點(diǎn)的底部剪力通過(guò)δ

17、eff和Keff的簡(jiǎn)單相乘計(jì)算出。根據(jù)假設(shè)在5%拉力下的線性荷載位移曲線和計(jì)算出的延展度,最終的底部剪力可以簡(jiǎn)化為屈服底部剪力。屈服底部剪力作為框架的設(shè)計(jì)底部剪力(Vd)。兩個(gè)性能標(biāo)準(zhǔn)中,第二個(gè)標(biāo)準(zhǔn)的底部剪力起支配作用,等于415千磅。</p><p><b>  密歇根大學(xué)設(shè)計(jì)方案</b></p><p>  采用密歇根大學(xué)研究的程序?qū)Φ撞考袅M(jìn)行重新計(jì)算(文獻(xiàn)2,

18、3)。其中地震對(duì)結(jié)構(gòu)頂點(diǎn)彈性輸入能量的一小部分等于結(jié)構(gòu)達(dá)到最大目標(biāo)位移所需的能量。這個(gè)程序的簡(jiǎn)單介紹如下。</p><p>  圖三:倒塌預(yù)防準(zhǔn)則的理性框架響應(yīng)</p><p>  首先,用理性的三線性曲線來(lái)模擬最大底部剪力和位移的關(guān)系,如圖三所示。這個(gè)三線性曲線是分別根據(jù)支撐框架的最大底部剪力剖面圖和瞬間框架得到的。這些剖面圖是理性的彈塑性響應(yīng)曲線。支撐框架的屈服點(diǎn)最大位移可以根據(jù)框架的

19、幾何構(gòu)造計(jì)算出。正如前面提到的假定支撐框架在這一點(diǎn)承受未知設(shè)計(jì)底部剪力Vd的80%。根據(jù)過(guò)去的分析結(jié)果,瞬間框架的最大屈服位移假定為2%,承受剩余設(shè)計(jì)底部剪力的20%。將這兩個(gè)雙線性曲線疊加得到整個(gè)框架位移荷載的三線性曲線(如圖三所示)。根據(jù)這個(gè)曲線計(jì)算出框架的延展度μ。</p><p>  第二部,根據(jù)彈性SDOF系統(tǒng),利用Housner給出的公式計(jì)算出最大輸入能量,公式如下所示:</p><

20、;p><b> ?。?)</b></p><p>  M和Sv分別表示總質(zhì)量和模擬線譜速率。然而,對(duì)于非彈性系統(tǒng),這個(gè)公式就需要進(jìn)行改良(如圖四a所示)。因此,在公式(2)中添加修正因子γ將理性彈塑性系統(tǒng)添加到選定的目標(biāo)位移中,如圖四a中所示。通過(guò)采用這個(gè)修正因子,并將Sv轉(zhuǎn)化為線譜加速度Ceg,模型所需能量Em可表示為下式所示,</p><p><b&g

21、t; ?。?)</b></p><p>  W和T分別表示系統(tǒng)的質(zhì)量和基本周期,Ce表示最大的聯(lián)合底部剪力。根據(jù)IBC2000(文獻(xiàn)5)的抗震規(guī)定,三層框架的T 可以估計(jì)為0.37秒。用這個(gè)周期,可以從臺(tái)灣抗震規(guī)則草圖(2002)給定的設(shè)計(jì)響應(yīng)譜線得到Ce。γ可以根據(jù)Leelataviwat提出的γ-μ-T關(guān)系(如圖四b所示)得到。</p><p>  圖四:(a)彈性、非彈性

22、能量的輸入 (b)周期能量修正因素</p><p>  改良的輸入能量Em等于作用在框架上的地震作用,如圖四a所示的位移。為這個(gè)目的,假定了雙線性荷載位移關(guān)系圖(如圖四a所示)和隨框架高度線性分配的樓層位移。如上所述,可以得到各層的地震力分配。根據(jù)這個(gè)能量平衡方程,得到設(shè)計(jì)底部剪力Vd.依據(jù)臺(tái)灣所采用的方法,由第二準(zhǔn)則(在2/50地震作用下有2.5%的位移)計(jì)算得到的等于340千磅,需要注

23、意它比臺(tái)灣采用的方法得到的計(jì)算結(jié)果小。</p><p>  13th World Conference on Earthquake Engineering</p><p>  Vancouver, B.C., Canada</p><p>  August 1-6, 2004</p><p>  Paper No. 497</p>

24、<p>  PERFORMANCE-BASED SEISMIC DESIGN AND BEHAVIOR OF A</p><p>  COMPOSITE BUCKLING RESTRAINED BRACED FRAME</p><p>  Prabuddha DASGUPTA1, Subhash C. GOEL2, Gustavo PARRA-MONTESINOS3, and

25、 K. C. TSAI4</p><p><b>  SUMMARY</b></p><p>  The concept of Buckling Restrained Braced Frames is relatively new and recently their use has increased</p><p>  in the U.S

26、., Japan and Taiwan. However, detailed design provisions for common practice are currently</p><p>  under development. Since the summer of 2002, researchers at the University of Michigan (UM) have</p>

27、<p>  been working cooperatively in a joint study with research team at the National Center for Research on</p><p>  Earthquake Engineering (NCREE), Taiwan, involving design, analysis and full scale te

28、sting of such a</p><p>  frame by pseudo-dynamic method.</p><p>  The selected structure is a three story, three bay frame consisting of concrete-filled-tube (CFT) columns,</p><p> 

29、 steel beams, and composite buckling restrained braces. The frame was designed using an Energy-Based</p><p>  Plastic Design procedure recently developed by co-author Goel at UM. The method utilized selected

30、</p><p>  target drifts (2.0% for 10% in 50 year and 2.5% for 2% in 50 year design spectra for this frame) and</p><p>  global yield mechanism. Because of the need for more precise control of de

31、sign clearances between the</p><p>  end connections and steel casing of the braces, buckling restrained braced frames are excellent candidates</p><p>  for application of this newly developed d

32、esign methodology.</p><p>  The paper briefly presents the energy-based approach developed at UM as well as a modal displacementbased</p><p>  design procedure adopted by the research team at NC

33、REE for calculation of design base shear for</p><p>  the frame. Results from inelastic response analyses of frames deigned by the two methods for a Taiwan</p><p>  earthquake are compared. The

34、same frame was also designed for a U.S. location and analyzed under</p><p>  ground motions scaled for U.S. standards. The frames designed by the UM approach exhibited</p><p>  satisfactory dyna

35、mic responses for both Taiwan and U.S. ground motions.</p><p>  INTRODUCTION</p><p>  Excellent seismic behavior of buckling restrained braces (BRBs) (Tsai [1]) encouraged an experimental</p&

36、gt;<p>  program at the National Center for Research on Earthquake Engineering (NCREE), Taiwan, in</p><p>  conjunction with analysis and design studies by researchers in the U.S. at the University of

37、 Michigan. In</p><p>  1 Ph.D. Candidate, University of Michigan, Ann Arbor, MI</p><p>  2 Professor, University of Michigan, Ann Arbor, MI</p><p>  3 Assistant Professor, Universit

38、y of Michigan, Ann Arbor, MI</p><p>  4 Professor, National Taiwan University, Taiwan</p><p>  this program, the BRBs provide the primary seismic resistance mechanism to a 3-story 3-bay frame,&l

39、t;/p><p>  tested under pseudo-dynamic loading at NCREE in October 2003. General layout of the prototype</p><p>  building is shown in Figure 1a, while a view of the test frame is shown in Figure 1

40、b. For design purpose,</p><p>  two of such frames were assumed to resist the total seismic force for a 3-story prototype building. The</p><p>  seismic frames are indicated by thick lines in Fi

41、gure 1a.</p><p>  DESCRIPTION OF TEST FRAME</p><p>  The frame was designed to resist the seismic loading through two separate mechanisms. The primary</p><p>  resistance is provide

42、d by buckling restrained braces in the central bay of the frame (Figure 1b). This bay</p><p>  is designed to act as a purely braced frame with all beam-to-column and brace-to-column connections</p>&

43、lt;p>  made as simple (pinned) connections. The braces are designed to resist 80% of the total seismic force for</p><p>  each seismic frame, while 20% of the load is resisted by the two external bays, de

44、signed as moment</p><p>  frames with moment connections at the joints of exterior beams and columns. All columns are made of</p><p>  concrete filled tubes. Different sections are chosen for in

45、terior and exterior columns, while keeping the</p><p>  same size along the building height. Wide flange sections are used for beams. Different beam sizes are</p><p>  used at different floors,

46、while keeping the same size in all the bays at each floor.</p><p><b>  4@23 ft</b></p><p><b>  6@ft</b></p><p><b>  3@23 ft</b></p><p&

47、gt;<b>  (a) (b)</b></p><p>  Figure 1: (a) Layout of the prototype building, (b) View of the test frame</p><p>  BUCKLING RESTRAINED BRACE PROPERTIES</p><p>  Buckling r

48、estrained braces are typically made by encasing a steel core member in a concrete filled steel</p><p>  tube (Figure 2a). The steel core is kept separated from the concrete filled tube by a layer of unbondin

49、g</p><p>  material applied on the surface of the steel core. The role of concrete encasing and steel tube is to prevent</p><p>  buckling of the steel core, so that a well formed load-displacem

50、ent response of the brace is achieved</p><p>  under large displacement reversals. The unbonding material ensures that the force coming into the BRB is</p><p>  carried by the core only, without

51、 engaging the encasing material. Different configurations of BRBs were</p><p>  tested at NCREE under large reversed cyclic axial loading and an optimum configuration was selected for</p><p>  u

52、se in the test frame (Tsai [1]) (Figure 2a). A typical load-displacement response obtained from the</p><p>  selected BRB configuration is shown in Figure 2b. As can be seen, full hysteretic loops and excell

53、ent</p><p>  energy dissipation were achieved. However, it is to be noted that the yield load reached in compression</p><p>  was about 10% higher than that reached in tension. This needs to be

54、accounted for while designing the</p><p><b>  frame.</b></p><p>  Seismic frame</p><p><b>  3@13 ft</b></p><p><b>  BRBs</b></p&g

55、t;<p><b>  4@23 ft</b></p><p>  6@23 ft 3@23 ft</p><p><b>  (a) (b)</b></p><p>  Figure 2: (a) Configuration of the BRB adopted, and (b) Typical load-

56、displacement behavior of a BRB</p><p>  (From Tsai [1])</p><p>  DESIGN CONSIDERATIONS</p><p>  A comparative study is presented on the behavior of three prototype frames designed t

57、o meet common</p><p>  performance criteria through different design procedures. The first frame was designed by the research</p><p>  team at NCREE. For this frame, calculation of base shear wa

58、s done following a multi-modal</p><p>  displacement-based seismic design (DSD) procedure and the guidelines stipulated in the 2002 Draft</p><p>  Taiwan Seismic Design Code. Design of that fram

59、e was done by elastic method. The second frame was</p><p>  designed by the team at University of Michigan. In this case, same base shear as calculated by the</p><p>  NCREE team was assumed. Ho

60、wever, a plastic design procedure, recently developed by Goel, was</p><p>  adopted to design the frame (UM Frame 1). The third frame (UM Frame 2) was designed for a base shear</p><p>  calculat

61、ed by following a simple energy-based procedure developed at UM (Leelataviwat [2], Lee [3]).</p><p>  Frame design was done by the plastic design method as used for UM Frame 1.</p><p>  The basi

62、c design parameters were selected by the research team at NCREE following the 2002 Draft</p><p>  Taiwan Seismic Design code. Total seismic weight of each floor was divided equally between the two</p>

63、<p>  seismic frames. The seismic weights applied on each frame were as follows,</p><p>  1st and 2nd Floor: 714 kips, and 3rd Floor: 564 kips</p><p>  In order to calculate the design bas

64、e shear for the prototype building, two performance criteria were</p><p>  considered and the one that resulted in higher design base shear was chosen for the design of the test</p><p>  frame.

65、In the first performance criterion (Life Safety), maximum roof drift was set at 0.02 radian when the</p><p>  building is subjected to an earthquake that has a 10% probability of exceedance in 50 years (10/5

66、0). In the</p><p>  second performance criterion (Collapse Prevention), maximum roof drift was set at 0.025 radian for a</p><p>  2/50 seismic event. A real ground motion time history was scaled

67、 by appropriate factors to represent the</p><p>  10/50 and 2/50 events. Scaling was done by considering the 5% damped Pseudo Spectral Acceleration</p><p>  (PSA) of a SDOF system with period T=

68、1 sec. The scaling factors were determined by equating this</p><p>  spectral acceleration to the corresponding values prescribed in the draft Taiwan seismic code for 10/50</p><p>  and 2/50 eve

69、nts at a hard rock site. The two resulting time histories have PGA values of 0.461g and</p><p>  0.622g, respectively.</p><p>  For the purpose of frame design and for performing the push-over a

70、nalysis, the total base shear needs to</p><p>  be distributed over the three floor levels. The force at i-th floor was calculated by using the following</p><p><b>  equation:</b><

71、;/p><p><b>  N d</b></p><p><b>  i</b></p><p><b>  i i</b></p><p><b>  i i</b></p><p><b>  i V</b>

72、</p><p><b>  m</b></p><p><b>  m</b></p><p><b>  F</b></p><p><b>  Σ?</b></p><p><b>  ?</b><

73、/p><p><b>  1</b></p><p><b>  ?</b></p><p><b>  ?</b></p><p><b>  , (1)</b></p><p>  where i i m and ??are the

74、 mass and target displacement, respectively, of the i-th floor, and d V is the total</p><p>  design base shear. The relative floor forces obtained are as follows:</p><p>  1st Floor: 0.11, 2nd

75、Floor: 0.365, and 3rd Floor: 0.525</p><p>  DESIGN BASE SHEAR</p><p>  Taiwan Design</p><p>  A brief description of the NCREE procedure to arrive at the design base shear is presen

76、ted in this section.</p><p>  A detailed description of this procedure can be found elsewhere (Tsai [1]).</p><p>  In the first step, the frame was idealized as a MDOF system with three degrees

77、of freedom. Modal</p><p>  Contribution Factors (MCF) for the three modes, as well as their modal masses and modal story drifts,</p><p>  were then computed. Since, for this particular frame, th

78、e contributions from the 2nd and 3rd modes (MCF =</p><p>  0.008 and 0.002, respectively) were insignificant compared to the contribution from the 1st mode (MCF =</p><p>  0.99) (Tsai [1]), only

79、 the 1st mode was considered for design purposes. Thus, the three floor</p><p>  displacements of the 1st mode were used to obtain an effective system displacement eff ??associated with</p><p> 

80、 the modal target roof drift.</p><p>  In the next step, the ductility demand for the 1st mode of the frame was computed. Because 80% of the</p><p>  seismic force was to be carried by the brace

81、d frame, yield drift of the effective system was computed</p><p>  based on the drift at the point of brace yielding and increased by 25% to account for the contribution from</p><p>  the moment

82、 frame. From the target maximum story drifts, ductility demand for each story was calculated</p><p>  and a simple average was taken as the effective ductility demand for the system. Using this ductility<

83、/p><p>  demand, and from the effective target displacement eff ??, the effective time period of the system was</p><p>  obtained from the inelastic displacement spectrum of the ground motion consi

84、dered. Corresponding</p><p>  effective stiffness eff K value of the system was computed from this time period.</p><p>  Finally, the base shear required at the point of target drift was compute

85、d by simply multiplying eff K</p><p>  by eff ??. This ultimate base shear was reduced to the yield base shear by assuming a bi-linear loaddisplacement</p><p>  curve with a strain hardening of

86、5% and the ductility demand as computed earlier. This</p><p>  yield base shear served as the design base shear (Vd) of the frame. Of the two performance criteria, the</p><p>  base shear comput

87、ed from the second criterion governed and was equal to 415 kips.</p><p><b>  UM Design</b></p><p>  The base shear was re-calculated by using a procedure developed at UM (Leelataviwa

88、t [2], Lee [3]),</p><p>  where a fraction of the peak elastic input energy of an earthquake to a structure is equated to the energy</p><p>  needed by the structure in getting pushed up to the

89、maximum target displacement. The procedure is</p><p>  briefly described below.</p><p>  In the first step, the base shear-roof displacement profile of the frame was modeled by an idealized tril

90、inear</p><p>  curve, as shown in Figure 3. This tri-linear curve was obtained by considering the base shear-roof</p><p>  displacement profiles of the braced frame and the moment frame separate

91、ly. Both of these profiles were</p><p>  idealized by elastic-perfectly plastic responses. Roof drift of the braced frame at yield point can be easily</p><p>  calculated from the geometry of th

92、e frame. As mentioned earlier, the base shear carried by the braced</p><p>  frame at this point was assumed as 80% of the total design base shear Vd, which is an unknown at this</p><p>  stage.

93、 Based on past analysis results, roof drift of the moment frame at yield was assumed as 2%, carrying</p><p>  the remaining 20% of the total base shear. These two bi-linear curves were superimposed to obtain

94、 the trilinear</p><p>  load-displacement curve of the whole frame (Figure 3). This tri-linear curve was further simplified</p><p>  to a bi-linear curve (Figure 3) by equating the areas under t

95、he two curves. The design ductility</p><p>  demand??for the frame was calculated from this curve.</p><p><b>  0</b></p><p><b>  0.2</b></p><p>

96、<b>  0.4</b></p><p><b>  0.6</b></p><p><b>  0.8</b></p><p><b>  1</b></p><p><b>  1.2</b></p><p&

97、gt;  0 0.5 1 1.5 2 2.5 3</p><p>  Roof Drift (%)</p><p>  Base Shear/Vd</p><p>  Figure 3: Idealized frame responses for Collapse Prevention criterion</p><p>  In the n

98、ext step, the peak input energy was calculated by considering an elastic SDOF system and by</p><p>  using the equation given by Housner [4], as shown below,</p><p><b>  2</b></p&

99、gt;<p><b>  2</b></p><p><b>  1</b></p><p>  E ??MSv , (2)</p><p>  where M and Sv are the total mass and the pseudo spectral velocity of the system,

100、respectively. However,</p><p>  for an inelastic system, this equation needs to be modified (Figure 4a). Thus, a modification factor??was</p><p>  applied to Eqn. (2) to estimate the energy need

101、ed to push the idealized elastic-perfectly plastic system to</p><p>  the selected target displacement, as shown in Figure 4a. Applying this modification factor and converting</p><p>  Sv to spe

102、ctral acceleration C g e , the modified required energy, m E , can be re-written as,</p><p><b>  2</b></p><p><b>  2 2</b></p><p><b>  1</b></

103、p><p><b>  ??</b></p><p><b>  ?</b></p><p><b>  ??</b></p><p><b>  ? ??m e C</b></p><p><b>  T</b>

104、</p><p><b>  E Wg</b></p><p><b>  ?</b></p><p><b>  ??, (3)</b></p><p>  where W and T are the total weight and the fundamental peri

105、od of the system, respectively. e C is the</p><p>  maximum base shear coefficient. Following the seismic provisions of IBC 2000 [5], the value of T for the</p><p>  3-story frame was estimated

106、as 0.37 sec. Using this period, e C was obtained from the design response</p><p>  spectra given in the Draft Taiwan Seismic Code (2002) for the two considered hazard levels. The value of</p><p>

107、;  ??was obtained from the ????????T relationship (Figure 4b) proposed by Leelataviwat [2].</p><p>  The modified input energy, m E is then equated to the total work done by the seismic forces applied to the

108、</p><p>  frame as it is pushed to the target drift as shown in Figure 4a. For this purpose, a bi-linear loaddisplacement</p><p>  behavior (Figure 4a) and a linear distribution of the floor dis

109、placements along the height of</p><p>  the frame were assumed. A distribution of floor forces, as mentioned earlier, was also assumed. From this</p><p>  Idealized tri-linear curve</p>&

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論