版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、<p> 大連交通大學信息工程學院</p><p> 畢業(yè)設計(論文)外文翻譯</p><p> 學生姓名 1111 專業(yè)班級 自動化0111班 </p><p> 指導教師 1111 職 稱 11111 </p><p> 所在單位 電氣工程系 </p>&l
2、t;p> 教研室主任 </p><p> 完成日期 1111 年 4 月 13 日</p><p> Date Acquisition</p><p> Date acquisition systems are used to acquire process operating data
3、and store it on secondary storage devices for later analysis. Many of the data acquisition systems acquire this data at very high speeds and very little computer time is left to carry out any necessary, or desirable, dat
4、a manipulations or reduction. All the data are stored on secondary storage devices and manipulated subsequently to derive the variables of interest. It is very often necessary to design special purpose data acqui</p&g
5、t;<p> Powerful mini- and mainframe computers are used to combine the data acquisition with other functions such as comparisons between the actual output and the desirable output values, and to then decide on the
6、 control action which must be taken to ensure that the output variables lie within pre-set limits. The computing power required will depend upon the type of process control system implemented .Software requirements for c
7、arrying out proportional, ratio or three term control of process variables </p><p> Microcomputer based data loggers are used to carry out intermediate functions such as data acquisition at comparatively lo
8、w speeds, simple mathematical manipulations of raw data and some forms of data reduction. The first generation of data loggers, without any programmable computing facilities, were used simply for slow speed data acquisit
9、ion from up to one hundred channels. All the acquired data could be punched out on paper tape or printed for subsequent analysis. Such hardwired data loggers </p><p> The data acquisition function carried o
10、ut by data loggers varies from one logging system to another. Simple data logging systems acquire data from a few channels while complex systems can receive data from hundreds, or even thousands, of input channels distri
11、buted around one or more processes. The rudimentary data loggers scan select number of channels, connected to sensors or transducers, in a sequential manner and the data are recorded in digital format. A data logger can
12、be dedicated in the s</p><p> Microcomputer controlled data acquisition facilitates the scanning of a large number of sensors. The scanning rate depends upon the signal dynamics which means that some channe
13、ls must be scanned at very high speeds in order to avoid aliasing errors while here is very little loss of information by scanning other cannels at slower speeds. In some data logging applications the faster channels req
14、uire sampling at speeds of up to 100 times per second while slow channels can be sampled once every five</p><p> The vast majority of the user programmable data loggers can be used to scan up to 1000 analog
15、 and 1000 digital input channels. A small number of data loggers, with a higher degree of sophistication, are suitable for acquiring data from up to 15,000 analog and digital channels. The data from digital channels can
16、be in the form of Transistor-Transistor Logic or contact closure signals. Analog data must be converted into digital format before it is recorded and requires the use of suitable analog t</p><p> Most data
17、loggers have a resolution capability of ±0.001% or better. It is also possible to achieve a resolution of 1 micro-volt. The resolution capability, in absolute terms, also depends upon the range of input signals, Sta
18、ndard input signal ranges are 0-1- volt, 0-50 volt and 0-100 volt. The lowest measurable signal varies form 1 u volt to 50 u volt .A higher degree of recording accuracy can be achieved by using modules which accept data
19、in small, selectable rages. An alternative is the auto </p><p> The accuracy with which the data are acquired and logged on the appropriate storage device is extremely important. It is therefore necessary t
20、hat the data acquisition module should be able to reject common mode noise and common mode voltage. Typical common mode noise rejection capabilities lie in the range 110 dB to 150dB. A decibel (dB) is a term which define
21、s the ratio of the power levels of two signals. Thus if the reference and actual signals have power levels of Nr and Na respectively, they</p><p> n=10 Log 10 (Na /Nr) </p><p> Protection agai
22、nst maximum common mode voltages of 200 to 500 volt is available on typical microcomputer based data loggers.</p><p> The voltage input to an individual data logger channel is measured, scaled and linearise
23、d before any further data manipulations or comparisons are carried out.</p><p> In many situations, it becomes necessary to alter the frequency at which particular channels are sampled depending upon the va
24、lues of data signals received from a particular input sensor. Thus a channel might normal be sampled once every 10 minutes. If, however, the sensor signals approach the alarm limit, then it is obviously desirable to samp
25、le that channel once every minute or even faster so that the operators can be informed, thereby avoiding any catastrophes. Microcomputer controlled intell</p><p> The conventional hardwired data loggers, wi
26、thout any programming facilities, simply record the instantaneous values of transducer outputs at a regular sampling interval. This raw data often means very little to the typical user. To be meaningful, this data must b
27、e linearised and scaled, using a calibration curve, in order to determine the real value of the variable in appropriate engineering units. Prior to the availability of programmable data loggers, this function was usually
28、 carried out in t</p><p> 1. ABSTRACT</p><p> The features of the data acquisition and control systems of the NASA Langley Research Centers Jet Noise Laboratory are presented. The Jet Noise La
29、boratory is a facility that simulates realistic mixed ow turbofan jet engine nozzle exhaust systems in simulated ight. The systems capable of acquiring data for a complete take-o_ assessment of noise and nozzle performan
30、ce.This paper describes the development of an integrated system to control and measure the behaviorof model jet nozzles featuring dual</p><p> 2. INTRODUCTION</p><p> The problem of jet noise
31、has been studied for many years. Since sound from jets is generated by a variety of uid mechanical mechanisms including turbulence, reducing jet noise is challenging. The particular part of jet noise studied in the Jet N
32、oise Laboratory (JNL) of the NASA Langley Research Center (LaRC) is the noise generated by the jet exhaust, or plume. Fluid mechanic phenomenon that generate plume noise are turbulent mixing, supersonic eddy Mach wave ra
33、diation,noise generated by turbulen</p><p> 3. DATA ACQUISITION SYSTEMS</p><p> The Dynamic Data Acquisition System (DDAS) is designed to record time data with frequence up to 100 KHz. The JNL
34、 DDAS is based on a SUN SPARC10 VME bus computer with recording capacity of 30 dynamic channels. A VME array processing card is included for performing data analysis (primarily fast Fourier transforms) in conjunction wit
35、h data acquisition. The JNL has a 28 microphone linear array for recording the fareld jet acoustics. Bruel & Kj_r (B&K) Instruments Type 4136 1/4" free _eld response m</p><p> These GPIB progr
36、ammable bandpass ampliers provide low and high pass corner frequency selection up to 102.3 KHz, pre-_lter gain of up to 40 dB in 10 dB steps,and post-_lter gain from -9.9 to 30.0 dB by steps of 0.1 dB. Each microphone si
37、gnal is then split into three paths: two dirent analog to digital (A/D) converter types and a custom 32 channel voltmeter.After data is recorded into the TDR memory, the host computer downloads the information over a GPI
38、B IEEE-488 bus interface or over the TDR 16 </p><p> The microphone signals recorded by the ICS-110A card are low-passed through a 32 channel VME ampli_er card with 25 KHz _xed corner frequency from Frequen
39、cy Devices Incorporated.</p><p> Figure 3.1 Noise Dynamic Data Acquisition System card) controls the ICS A/D card over the VSB bus the writes the data to the SUN hard disks.</p><p> Figure 3A
40、shows a block diagram of the complete dynamic data system. Another important part of the DDAS is a custom 32 channel Root-Mean-Square (RMS) voltmeter with a Liquid Crystal Display (LCD) display. The RMS voltmeter uses an
41、 embedded Z80 based single board computer by Z-World that has a 12 bit A/D converter to measure the output of the multiplexed RMS to DC converter circuits. The Z80 computer displays the overall Sound Pressure Level (SPL)
42、 of the microphone array on a 7"x4" LCD screen in </p><p> channels, and adjustable data point duration and sampling rate. Both individual samples and the average values over the point duration ca
43、n be saved to disk.</p><p> The analog input system is a Ne_ Instrument Corporation System 620 Series 600 which has a 100 KHz sample rate 16 bit A/D converter and can scan up to 512 channels per system. The
44、 JNL Ne_ has 64 channels in one 7" rack mount unit. The Ne_ 620 also supplies ampli_cation and low pass _lters. The force balance load cells are powered through a Ne_ System 620 Series 300 signal conditioner. The lo
45、ad cells are full bridge with built-in temperature compensation. Thermocouples are connected to the Ne_ Ser</p><p> 4. INTEGRATION OF SYSTEMS</p><p> The entire JNL DDAS is comprised of a vari
46、ety of di_erent instruments and computers. The main computer originally was a DEC Micro-VAX computer but has been changed to a SUN UNIX system. Instrumentation connects to this host through the General Purpose Interface
47、Bus (GPIB) or RS-232 serial communications. Most of the original data acquisition software was coded in FORTRAN. The main e_ect of switching from DEC to UNIX was that the software for accessing RS-232 serial ports and GP
48、IB adapter were no</p><p> An operating system feature that improves the data acquisition programs is shared memory. Shared memory allows multiple independent programs to communicate with each other very ra
49、pidly.</p><p> On UNIX computers, the shared memory region is created by C functions. The address of the region is passed as an argument to a FORTRAN subroutine and the FORTRAN code uses a structure de_niti
50、on to de_ne variables relative to memory locations. This sharing feature was also available under the DEC VMS operating system.Another important mechanism for connecting computers is by using the Ethernet network. The SD
51、AS developed by Wyle Labs included a server program that was based on Berkeley Standard D</p><p> Two programs developed for the DDAS combine all of these features and serve as the foundation for testing wi
52、th the DSPM. A real time program called Background is designed to provide information for monitoring the conditions of the facility and model. Background establishes the shared memory region, initializes communication wi
53、th various instruments, connects to the SDAS by sockets and the control system by RS-232. It then enters an endless loop in which it reads the instruments, SDAS, and contro</p><p> 5. FUTURE IMPROVEMENTS<
54、;/p><p> As research requirements change, so do the tools necessary to meet those requirements. Every aspect of the JNL data acquisition and control systems have been modi_ed in some way after entering service
55、. The control system is currently inadequate for closed loop control of both burners simultaneously. Replacing some of the Optomux I/O with a higher speed type is being examined as a way of improving the system for close
56、d loop control. Installing PC I/O cards that would still be controlled by the Pa</p><p> The other limitation of the TDR system is the slow download speed. It takes approximately 4.5 minutes to read out the
57、 data and write it to disk on the DDAS computer. The goal for setting the gains and having the data written out to the DDAS disks is a total of 2 minutes. One type of product that is being examined to meet this requireme
58、nt is a VME bus based A/D card with 16 bit A/D converters that can sample at 250 KHz, with a high speed data port connected to an auxiliary processor (AP) like the</p><p> 6. ACKNOWLEDGMENTS</p><
59、p> The author would like to thank the Jet Noise Group of the Aeroacoustic Branch for their support and comments during the development of the systems described in this paper. As with any project of this scope, many p
60、eople were involved in building this entire system. In particular, I would like to recognize NASA engineers Jack Seiner, Michael Ponton, Martha Brown, Henry Haskin, and Robert Grandle, NASA operations support personnel C
61、li_ord Williford, Gregory Hogg, Beverly Jones Anderson, Richard Whi</p><p><b> 數據采集</b></p><p> 數據采集??系統,用于采集運行中的數據,并存儲在輔助存儲器上,以供日后分析。許多數據采集系統以很高的速度獲得這些數據,并且留給電腦很少的時間進行任何必要的或可取的數據操
62、作或減少。所有數據都存儲在輔助存儲設備上,隨后獲得感興趣的變量。設計專用的數據采集系統和接口來獲得高速過程數據是非常必要的。這種特殊目的的設計可能是個昂貴的主張。</p><p> 強大的迷你和主機計算機被用來將數據采集與其他功能,如比較實際輸出和期望的輸出值,然后決定控制行為,在預先設定的限制內采取措施保證產出變量。其計算能力需要將取決于類型的過程控制系統的實現。針對執(zhí)行比例、比率或過程變量三項控制的軟件需求
63、相對瑣碎,但微型計算機可用于實現這樣的過程控制系統。它將不可能使用許多現有的微機的實施高速自適應控制系統必須使用合適的過程模型和可觀的在線操作數據。</p><p> 微機數據采集器是用來進行中間數據采集等功能于一體,在相對較低的速度,簡單的數學操作的原始數據和一些形式的數據歸算的。第一代數據采集器沒有任何可編程計算機設備,采用慢速從一百個頻道采集了數據。所有獲得的數據可以在紙帶上穿孔或打印之后的分析。這種硬件
64、連線數據采集器被與微機結合、并可由用戶編程的新一代數據采集器所取代。他們提供了一個極好的過程數據收集方法,采用標準化的接口,隨后執(zhí)行必要的操縱向過程操作員提供這有用的信息。獲得的數據可用于分析在過程變量與開發(fā)自適應和優(yōu)化過程控制必須的數學模型之間是否具有差異性。</p><p> 數據采集器執(zhí)行的數據采集功能在不同系統之間變化。簡單的數據日志系統獲得數據從幾個通道而復雜系統接收數據從數百,甚至數千輸入通道的分布
65、在一個或多個過程。初步的數據采集器用掃描數來選擇, 用一個順序的方式連接到傳感器或轉換器,數據記錄用數字格式。一個數據監(jiān)測器在某個意義上說,它只能收集數據從特定類型的傳感器及轉換器。最好是使用非專用數據采集器因為任何傳感器或轉換器能被連接到使用適當的信號處理模塊。微型計算機控制的數據采集便于大量的傳感器掃描。掃描速率取決于信號動態(tài),這意味著為了避免錯誤一些通道必須在非常高速掃描,而在較慢的速度掃描其他通道信息會有非常小的損失。在一些數據
66、采集應用中,快速通道需要可達每秒100次的采樣速度,而慢速通道可以每隔五分鐘采樣一次。傳統的硬件接線、不可編程的數據采集器以一種連續(xù)的方式采樣所有的通道,并且所有通道的采樣頻率都必須是相同。本程序的結果在積累了大量的數據,其中一些是不必要的,也減緩了全面有效的采樣頻率。和其它慢速通道相比,基于微機的數據采集器可用在較高頻率下掃描快速通道。</p><p> 絕大多數的用戶可編程的數據采集器可以用來掃描1000個
67、模擬和1000個數字輸入通道。少量的數據采集器,具有較高的先進性,適合從15000模擬和數字通道獲取數據。數字通道的數據可以有以下幾種形式:晶體管-晶體管邏輯或節(jié)點閉合信號。模擬數據必須被轉換成數字形式記錄并且必須使用合適的模擬/數字轉換器(ADC)。ADC的特性能定義可實現的分辨率,以及不同通道都可以采樣分析的速率。越來越多的用于提高位分辨率的A/D轉換器。逐次逼近型ADC的分辨率比積分型ADC快。許多微型計算機控制的數據采集器一起使
68、用包括設施規(guī)劃通道掃描率。典型的掃描速率變化從每秒2頻道到每秒10000個通道。</p><p> 大多數數據采集器具有±0.01%或更好的分辨能力。也有可能達到1微伏的分辨率。從絕對意義上來說,分辨能力也取決于輸入信號的范圍,標準輸入信號范圍為0-10伏特、0-50伏特和0-100伏特。最低的可測量從1到50伏特的信號變化,使用在較小、可選范圍內接收數據的模塊可獲得較高的采集精度。另一種是從數據采集
69、器里得到的自動測距裝置。</p><p> 準確的數據獲取、登陸合適的存儲設備是十分重要的,因此對數據采集模塊來說抑制共模噪聲和共模電壓是必要的。典型的共模噪聲抑制能力在110dB-150dB范圍之間,分貝(dB)即為定義為兩種信號功率電平比值,因此,如果參考信號和實際信號的功率電平分別為Nr、Na,它們的比值為n分貝,其中</p><p> n = 10 Log10(Na/ Nr)&
70、lt;/p><p> 防止最大普通模式電壓200至500伏特的典型可在微機數據采集器一起使用。</p><p> 電壓輸入到一個單獨的數據樵夫通道量測、規(guī)?;途€性化任何進一步的數據操作前或比較執(zhí)行。</p><p> 在許多情況下,有必要改變從某一特定輸入傳感器收到的數據信號所決定的特定通道的采樣頻率,因此,某種通道可能每隔10分鐘采樣一次,但是如果傳感器信號逼
71、近報警門限,很明顯就需要每分鐘、甚至更快的采樣,這樣就能使操作員能夠及時獲知信息,避免任何災難的來臨。微型計算機控制的智能數據采集器可編程用于改變基于過程信號值的采樣頻率,包含自掃描模塊的其他數據采集器可以主動采樣。</p><p> 沒有任何編程設施的傳統硬件接線數據采集器,能簡單地在固定采樣間隔內記錄傳感元件輸出的瞬時值,這個原始數據通常很少與典型用戶相關。為了使其有意義,該數據必須使用校準曲線進行線化和調
72、節(jié),這樣就能以適當的工程單位確定變量的真實值。在可編程數據采集器可用之前,該函數通常是在微型或大型計算機的離線模式上執(zhí)行。原始數據值必須以二進制或八進制代碼在紙帶上打孔,用于輸入計算機進行隨后的分析目的,并轉換為工程單位,紙帶打孔是能降低通道掃描速度的低速機械裝置,另一種是打印出原始數據值,并進一步降低數據掃描速率的裝置,它不可能進行任何限制比較或提供任何報警信息。由數據采集器獲取的每一個單值都必須進行記錄,即使它可能在以后的分析中不起
73、到任何有用的目的;另外許多數據值只需當他們處在預設低限和高限之外時進行記錄。</p><p><b> 1.摘要</b></p><p> 美國國家航空和宇宙航行局蘭利研究中心噴氣機噪音實驗室介紹了數據采集和控制系統的特點。噴氣機噪聲實驗室模擬現實的混合設備, 建立擁有噴嘴噴氣發(fā)動機排氣系統。該系統能夠獲得一個完整的噪聲和噴嘴性能評估數據。本文闡述了開發(fā)于一體的控
74、制和測量噴氣機噴嘴具有雙重獨立模型高壓燃燒空氣流與風隧道的綜合性系統。</p><p> 數據采集、控制系統能夠同時測量力量、時刻、靜態(tài)和動態(tài)控制模型的壓力和溫度,和噴氣機的噪聲。為協調控制計算機和多種數據采集計算機和儀器的設計概念進行了討論。對控制系統的設計與實現進行解釋,指出描述的特點,設備和經驗的個人電腦使用主要基于系統。檢查未來的發(fā)展領域。</p><p><b>
75、2.引言</b></p><p> 噴氣機噪聲的問題已經被研究了許多年。自從噴氣機噪聲產生于多種機械機制包括湍流,減少噴氣機噪聲是有挑戰(zhàn)性的。美國國家航空和宇宙航行局蘭利研究中心(LaRC) 噴氣機噪聲實驗室(JNL)研究噴氣機噪聲是由噴射排氣噪聲,或羽毛產生。流體力學現象產生的羽流噪聲是紊流混合、超音速艾迪馬赫波輻射、噪聲產生的旋渦通過湍流沖擊噪聲寬帶沖擊作為屬性,共振沖擊振動稱為尖叫。為了取得新
76、進展的噴氣機降噪,研究需要試著去了解背后的物理噪聲產生的機理。仿真模型在射流規(guī)模上取得了巨大的成果。真正噴氣機的一個重要特征是高溫尾氣燃燒過程和行為溫度對噪聲產生的機理。在一個不能供熱的環(huán)境下導致噴氣機的噪音減少,并不總是噴氣機降噪熱的解決方案。噴氣機噪音大大降低,需要從一個研究機構,可以制作出逼真的溫度、壓力。一個正常的渦扇發(fā)動機,一般用于亞音速運輸噴氣機,有一個熱燃燒機制(核心流)包圍一個冷卻的壓縮機制(旁路或風扇流)。</p
77、><p><b> 3.數字采集系統</b></p><p> 動態(tài)數據采集系統(DDAS)是用來記錄時間數據,高達100千赫茲的頻率。JNL DDAS是基于SUN SPARC10 VME計算記錄能力為30個動態(tài)通道。一個VME陣列處理卡是包括了執(zhí)行數據分析(主要是快速傅里葉變換)和結合數據采集。JNL擁有28個傳音器線性數組記錄噴氣機噪音的情況。Br_uel和Kj_
78、r (B&K)儀器4136 1/4型自由響應傳音器和2811型多路復用器電源使用。傳音器帶寬延伸到大約100千赫茲。根據噴嘴模型、動態(tài)壓力傳感器安裝可以推一個內部的部分測量表面壓力噴嘴。通常的傳感器產品模型XCE- 093, 直徑3/32英寸,常規(guī)設計水冷夾是用來保護傳感器。精密過濾器B&K2811的直接輸出是改變的。</p><p> 通過這些GPIB可編程的器件提供低通和高通過拐角頻率選擇1
79、02.3 KHz,壓力以10分貝為階梯增加到40分貝為止,以0.1分貝為階梯從-9.9分貝增加到30.0分貝。每一個話筒信號分成了三個部分:兩個模擬到數字(A/D) 類型轉換器和一個定制的32路的電壓表。數據記錄到TDR存儲器,主機通過一個定制的主計算機在GPIB IEEE - 488總線接口或者在TDR 16位并行總線接口電路中下載信息。并行總線傳輸速率約為170 KB /秒GPIB接口速率約30 KB/秒。從集成電路與系統有限公司的
80、16位62.5千赫茲ICS-110A VME卡上,以低采樣率獲得另一個數據集。</p><p> 從頻率設備股份有限公司通過32路拐角頻率25 KHz 的VME卡記錄傳音器信號。</p><p> 圖3.1是動態(tài)數據采集系統噪聲控制ICS A/D卡通過VSB寫數據到SUN硬盤。</p><p> 圖3 A顯示了一個完整的動態(tài)數據系統框圖。另一個重要的組成部分,
81、是一個定制的DDAS均方根(RMS)32頻道電壓表和液晶顯示屏(LCD)顯示。電壓表使用的均方根值基于嵌入式Z80單板機控制,通過Z-World 12位A/D轉換器測量輸出有效值電路,多路直流轉換器。電腦顯示器整體的Z80聲壓級(SPL)的傳音器陣列在7×4英寸液晶屏幕上顯示一個條形圖的格式(圖3 B)。DDAS讀取電壓值是在TDR信號數字化前對RMS電壓表進行選擇所得。DDAS電腦的中央控制器,并不是唯一的電腦系統。靜態(tài)數據
82、采集系統(SDAS)用來記錄不同的信號和計算這些信號時間跨度緩慢的平均值。JNL SDAS是一個開放體系結構的計算機。這是一個6-U VME總線系統使用在雙摩托羅拉88 K的CPU和REAL/IX 實時UNIX操作系統上。數據采集軟件應用于美國國家航空和宇宙航行局諾拉懷爾實驗室。它的特性包括一個圖形用戶接口(GUI)、實時圖形顯示,用戶可編程的方程和校準渠道,可調數據點時間和采樣率。個人樣品對點時間平均值可以保存到磁盤。</p&g
83、t;<p> 模擬輸入系統是一個儀器公司620系列600型號,其中有一個100千赫采樣率16位A/D轉換器,可以掃描每512個通道系統。JNL Ne_ 620的一個機架安裝單元有64個頻道。Ne_ 620還提供高通和低通。負載平衡力通過單元提供動力的Ne_620系列300信號調節(jié)器。負荷單元全橋內置溫度補償。熱偶是連接到Ne_600通過儀器溫度均勻性很好的參考板(UTR)。該零件終端帶鋼一個100歐姆的鉑電阻溫度檢測器(
84、RTD)測量冷端溫度補償導線板改變銅絞線電線。用軟件編程來校正冷端溫度,并進行了多項式電壓推導出熱電偶溫度。SDAS另一個主要部分的性能是衡量靜態(tài)壓力。設置飛機關鍵操作條件的總壓力,而上游噴管(稱為充電站)噴嘴也有測壓孔模型沿墻內部速度可以使計算進行比較的解決方案。其他壓力探針測量使用遠程定位在實際射流排氣煙羽。JNL運用電子掃描壓力(ESP)系統和壓力系統(PSI)。本產品由傳感器模塊16,32,48或64個人應變壓力傳感器模塊(總體
85、規(guī)模大小約2.5X1.5X1.5)。在一個16位A/D轉換器以50千赫茲采樣前多路傳感器與每個模塊和其他外部連接。每個模塊已建成了校準壓力閥,可以用于</p><p><b> 4.集成系統</b></p><p> JNL DDAS是由許多儀表和計算機組成的。主機是DEC Micro-VAX,但已經換成了一個SUN UNIX系統。儀表連接到該主機通過通用接口總線
86、(GPIB)或RS—232串行通信。大多數的原始數據采集軟件編碼FORTRAN語言。主要方法從DEC切換到UNIX是軟件來訪問RS - 232串口和通用接口總線適配器,現在是通過C語言。大部分的JNL工程師們只有FORTRAN編程經驗,所以一組C函數是用來簡化訪問C系列、GPIB和FORTRAN語言特征的通用接口總線。幾乎JNL每一個項目的都是C和FORTRAN程序的聯合作用。最新儀器VME總線系統的卡片,它能夠通過C語言基礎操作系統功
87、能和運行。</p><p> 共享內存提高了一個操作系統的數據采集功能。共享內存允許多個獨立程序快速的來進行彼此的溝通。在UNIX計算機,共享內存區(qū)是由C功能建立。區(qū)域的地址被作為一個參數傳遞到一個FORTRAN程序代碼和FORTRAN語言同樣結構的變量的內存位置。這種共享的特征是也可用在DEC VMS操作系統。另一個重要的機制,是連接計算機利用以太網網絡。諾拉·懷爾實驗室開發(fā)的性能包括一個服務器程序
88、,它是基于美國加州大學柏克萊分校的標準分布(BSD)接口。服務器可以送出真正的時間和平均數據,被觸發(fā)而采取一個數據點,接受系統實時處理的數據值,并提供性能狀態(tài)信息。</p><p> DDAS的兩個項目結合了所有的這些功能和服務的基礎與DSPM測試。提出了一種實時節(jié)目背景的目的是提供信息,用于監(jiān)視設備和條件模型。背景建立共享內存區(qū)域,通信和各類儀器設備初始化,通過插座連接性能并由RS-232控制系統。然后進入一
89、個死循環(huán)中,它讀取儀器、性能、以及控制系統的數值,導出平均壓力和溫度計算值,然后送給SDAS同時控制系統的性能。DDAS其他主要項目獲得傳音器信號后被命名。這是程序,配合SDAS(為了性能和模型氣動數據)數據采集過程性能的分析,以及DDAS(麥克風和壓力資料)控制系統。</p><p> 一系列的菜單提供用戶機會改變默認設置,例如傳感器記錄的數量、采樣率、數據集的大小,以及頻率。一旦運營商DSPM調整到所需的試
90、驗條件、數據采集經營者提供了部分的程序,用相同的RMS-DC儀表和調整精密過濾器的收益均方根值來實現這個目標。當DSPM采集數據,是在正確的條件和可以接受的增益下,程序觸發(fā)的的SDAS(設置平均從10到30秒)ICS-110A卡用8秒采樣62.5千赫茲,Paci_c TDRs卡2秒采樣250千赫茲。當前值在后臺寫一個開始和結束時的平均周期的日志。</p><p><b> 5.未來的改進</b&
91、gt;</p><p> 為研究需求的變化,所以做必要的工具來滿足這些需求。JNL的每一個方面讓數據采集和控制系統已經在某種程度上進入服務。該控制系統是目前不適用于閉環(huán)控制的兩個燃燒器同時進行。更換部分的I/O和更高的速度打字是提高整個系統的閉環(huán)控制的一種方式。安裝計算機I/O卡是一個可以控制TNT軟件的選擇。添加一個可編程邏輯控制器(PLC)控制系統或其他控制系統/軟件包,可以用于TNT作為模板。這是一個理想
92、的模擬輸入12位A/D轉換器和較多特定參數的設計。目前的DDAS是有限的12位分辨率和有限的數據下載速度。因為得到了12位分辨率必須設置防止削波,但會取得最高的信噪比(SNR)和動態(tài)范圍。未來的計劃包括購買16位A/D轉換器,為設置一個給定的增益更大的動態(tài)范圍提供一個解決方案。增益就必須設置足夠高,使獲得較好的噪聲記錄。為所有頻道計算增益要求做到大約1伏特,設置增益,然后在獲得數據前不斷地復查有效值的數據。噴氣機噪聲產生3個因素(非正弦
93、),因此使用RMS不是一個防止削波的可靠方法。增益設置過程需要2到5分鐘。</p><p> TDR系統的另一個限制是緩慢的下載速度。需要大約4.5分鐘來讀數據,并把它記錄到DDAS電腦的磁盤上。目標增益的設定和寫數據到DDAS的磁盤一共用2分鐘?,F正研究一個類型的產品,以滿足這一要求是基于VME總線的16位的A/D轉換器,可在250 kHz采樣的A/D卡,連接到一個輔助處理器(AP),如目前使用的高速數據端口
94、。32通道的,總的數據比例每秒達800萬個樣本或每秒15.26MB。</p><p><b> 6.致謝</b></p><p> 感謝射流噪聲集團的Aeroacoustic分公司,感謝他們的支持和系統開發(fā)過程中的意見。在此范圍內的任何項目,許多人積極參與到整個系統的建立。我特別想要認識到美國宇航局的工程師們杰克,邁克爾·波頓,瑪莎·布朗,亨利
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 數據采集外文翻譯
- 外文翻譯---數據采集簡介
- 外文翻譯---正確選擇數據采集系統
- 外文翻譯---正確選擇數據采集系統
- 外文翻譯---正確選擇數據采集系統
- 外文翻譯---正確選擇數據采集系統.doc
- 外文翻譯-----單片機數據采集接口
- 外文翻譯---正確選擇數據采集系統(原文)
- 外文翻譯--高速數據采集系統的設計
- 外文翻譯---正確選擇數據采集系統.doc
- 數據庫畢業(yè)設計外文翻譯--正確選擇數據采集系統
- 畢業(yè)設計----多路數據采集系統(含外文翻譯)
- 電能數據采集系統設計畢業(yè)設計(含外文翻譯)
- 外文翻譯---基于arm與線性ccd的高速數據采集系統
- 外文翻譯--基于短消息服務的數據采集與傳輸系統
- 高精度的計算機數據采集及交換【外文翻譯】
- 外文翻譯--基于短消息服務的數據采集與傳輸系統
- 外文翻譯--基于短消息服務的數據采集與傳輸系統(英文)
- 外文翻譯----基于混合信號的數據采集卡的虛擬示波器
- 外文翻譯----基于混合信號的數據采集卡的虛擬示波器
評論
0/150
提交評論