版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、<p> 外文翻譯《建筑的組成部分》</p><p> Structural Systems to resist lateral loads</p><p> Commonly Used structural Systems</p><p> With loads measured in tens of thousands kips, there
2、is little room in the design of high-rise buildings for excessively complex thoughts. Indeed, the better high-rise buildings carry the universal traits of simplicity of thought and clarity of expression.</p><p
3、> It does not follow that there is no room for grand thoughts. Indeed, it is with such grand thoughts that the new family of high-rise buildings has evolved. Perhaps more important, the new concepts of but a few year
4、s ago have become commonplace in today’ s technology.</p><p> Omitting some concepts that are related strictly to the materials of construction, the most commonly used structural systems used in high-rise b
5、uildings can be categorized as follows:</p><p> 1. Moment-resisting frames.</p><p> 2. Braced frames, including eccentrically braced frames.</p><p> 3. Shear walls, including
6、steel plate shear walls.</p><p> 4. Tube-in-tube structures.</p><p> 5. Tube-in-tube structures.</p><p> 6. Core-interactive structures.</p><p> 7. Cellular or
7、bundled-tube systems.</p><p> Particularly with the recent trend toward more complex forms, but in response also to the need for increased stiffness to resist the forces from wind and earthquake, most high-
8、rise buildings have structural systems built up of combinations of frames, braced bents, shear walls, and related systems. Further, for the taller buildings, the majorities are composed of interactive elements in three-d
9、imensional arrays.</p><p> The method of combining these elements is the very essence of the design process for high-rise buildings. These combinations need evolve in response to environmental, functional,
10、and cost considerations so as to provide efficient structures that provoke the architectural development to new heights. This is not to say that imaginative structural design can create great architecture. To the contrar
11、y, many examples of fine architecture have been created with only moderate support from the structura</p><p> While comprehensive discussions of these seven systems are generally available in the literature
12、, further discussion is warranted here .The essence of the design process is distributed throughout the discussion.</p><p> Moment-Resisting Frames</p><p> Perhaps the most commonly used syste
13、m in low-to medium-rise buildings, the moment-resisting frame, is characterized by linear horizontal and vertical members connected essentially rigidly at their joints. Such frames are used as a stand-alone system or in
14、combination with other systems so as to provide the needed resistance to horizontal loads. In the taller of high-rise buildings, the system is likely to be found inappropriate for a stand-alone system, this because of th
15、e difficulty in mobilizi</p><p> While comprehensive discussions of these seven systems are generally available in the literature, further discussion is warranted here .The essence of the design process is
16、distributed throughout the discussion.</p><p> Moment-Resisting Frames</p><p> Perhaps the most commonly used system in low-to medium-rise buildings, the moment-resisting frame, is characteriz
17、ed by linear horizontal and vertical members connected essentially rigidly at their joints. Such frames are used as a stand-alone system or in combination with other systems so as to provide the needed resistance to hori
18、zontal loads. In the taller of high-rise buildings, the system is likely to be found inappropriate for a stand-alone system, this because of the difficulty in mobilizi</p><p> Analysis can be accomplished b
19、y STRESS, STRUDL, or a host of other appropriate computer programs; analysis by the so-called portal method of the cantilever method has no place in today’s technology.</p><p> Because of the intrinsic flex
20、ibility of the column/girder intersection, and because preliminary designs should aim to highlight weaknesses of systems, it is not unusual to use center-to-center dimensions for the frame in the preliminary analysis. Of
21、 course, in the latter phases of design, a realistic appraisal in-joint deformation is essential.</p><p> Braced Frames</p><p> The braced frame, intrinsically stiffer than the moment –resisti
22、ng frame, finds also greater application to higher-rise buildings. The system is characterized by linear horizontal, vertical, and diagonal members, connected simply or rigidly at their joints. It is used commonly in con
23、junction with other systems for taller buildings and as a stand-alone system in low-to medium-rise buildings.</p><p> While the use of structural steel in braced frames is common, concrete frames are more l
24、ikely to be of the larger-scale variety.</p><p> Of special interest in areas of high seismicity is the use of the eccentric braced frame.</p><p> Again, analysis can be by STRESS, STRUDL, or
25、any one of a series of two –or three dimensional analysis computer programs. And again, center-to-center dimensions are used commonly in the preliminary analysis.</p><p> Shear walls</p><p> T
26、he shear wall is yet another step forward along a progression of ever-stiffer structural systems. The system is characterized by relatively thin, generally (but not always) concrete elements that provide both structural
27、strength and separation between building functions.</p><p> In high-rise buildings, shear wall systems tend to have a relatively high aspect ratio, that is, their height tends to be large compared to their
28、width. Lacking tension in the foundation system, any structural element is limited in its ability to resist overturning moment by the width of the system and by the gravity load supported by the element. Limited to a nar
29、row overturning, One obvious use of the system, which does have the needed width, is in the exterior walls of building, where the requ</p><p> Structural steel shear walls, generally stiffened against buckl
30、ing by a concrete overlay, have found application where shear loads are high. The system, intrinsically more economical than steel bracing, is particularly effective in carrying shear loads down through the taller floors
31、 in the areas immediately above grade. The sys tem has the further advantage of having high ductility a feature of particular importance in areas of high seismicity.</p><p> The analysis of shear wall syste
32、ms is made complex because of the inevitable presence of large openings through these walls. Preliminary analysis can be by truss-analogy, by the finite element method, or by making use of a proprietary computer program
33、designed to consider the interaction, or coupling, of shear walls.</p><p> Framed or Braced Tubes</p><p> The concept of the framed or braced or braced tube erupted into the technology with th
34、e IBM Building in Pittsburgh, but was followed immediately with the twin 110-story towers of the World Trade Center, New York and a number of other buildings .The system is characterized by three –dimensional frames, bra
35、ced frames, or shear walls, forming a closed surface more or less cylindrical in nature, but of nearly any plan configuration. Because those columns that resist lateral forces are placed as far </p><p> The
36、 analysis of tubular structures is done using three-dimensional concepts, or by two- dimensional analogy, where possible, whichever method is used, it must be capable of accounting for the effects of shear lag.</p>
37、<p> The presence of shear lag, detected first in aircraft structures, is a serious limitation in the stiffness of framed tubes. The concept has limited recent applications of framed tubes to the shear of 60 stor
38、ies. Designers have developed various techniques for reducing the effects of shear lag, most noticeably the use of belt trusses. This system finds application in buildings perhaps 40stories and higher. However, except fo
39、r possible aesthetic considerations, belt trusses interfere with nearly e</p><p> Tube-in-Tube Structures</p><p> The tubular framing system mobilizes every column in the exterior wall in resi
40、sting over-turning and shearing forces. The term‘tube-in-tube’is largely self-explanatory in that a second ring of columns, the ring surrounding the central service core of the building, is used as an inner framed or bra
41、ced tube. The purpose of the second tube is to increase resistance to over turning and to increase lateral stiffness. The tubes need not be of the same character; that is, one tube could be framed, whil</p><p&
42、gt; In considering this system, is important to understand clearly the difference between the shear and the flexural components of deflection, the terms being taken from beam analogy. In a framed tube, the shear compone
43、nt of deflection is associated with the bending deformation of columns and girders (i.e, the webs of the framed tube) while the flexural component is associated with the axial shortening and lengthening of columns (i.e,
44、the flanges of the framed tube). In a braced tube, the shear comp</p><p> Following beam analogy, if plane surfaces remain plane (i.e, the floor slabs),then axial stresses in the columns of the outer tube,
45、being farther form the neutral axis, will be substantially larger than the axial stresses in the inner tube. However, in the tube-in-tube design, when optimized, the axial stresses in the inner ring of columns may be as
46、high, or even higher, than the axial stresses in the outer ring. This seeming anomaly is associated with differences in the shearing component of st</p><p> Core Interactive Structures</p><p>
47、 Core interactive structures are a special case of a tube-in-tube wherein the two tubes are coupled together with some form of three-dimensional space frame. Indeed, the system is used often wherein the shear stiffness o
48、f the outer tube is zero. The United States Steel Building, Pittsburgh, illustrates the system very well. Here, the inner tube is a braced frame, the outer tube has no shear stiffness, and the two systems are coupled if
49、they were considered as systems passing in a straight line fr</p><p> The space structures of outrigger girders or trusses, that connect the inner tube to the outer tube, are located often at several levels
50、 in the building. The AT&T headquarters is an example of an astonishing array of interactive elements:</p><p> 1. The structural system is 94 ft (28.6m) wide, 196ft(59.7m) long, and 601ft (183.3m) high
51、.</p><p> 2. Two inner tubes are provided, each 31ft(9.4m) by 40 ft (12.2m), centered 90 ft (27.4m) apart in the long direction of the building.</p><p> 3. The inner tubes are braced in the
52、short direction, but with zero shear stiffness in the long direction.</p><p> 4. A single outer tube is supplied, which encircles the building perimeter.</p><p> 5. The outer tube is a momen
53、t-resisting frame, but with zero shear stiffness for the center50ft (15.2m) of each of the long sides.</p><p> 6. A space-truss hat structure is provided at the top of the building.</p><p> 7
54、. A similar space truss is located near the bottom of the building</p><p> 8. The entire assembly is laterally supported at the base on twin steel-plate tubes, because the shear stiffness of the outer tub
55、e goes to zero at the base of the building.</p><p> Cellular structures</p><p> A classic example of a cellular structure is the Sears Tower, Chicago, a bundled tube structure of nine separate
56、 tubes. While the Sears Tower contains nine nearly identical tubes, the basic structural system has special application for buildings of irregular shape, as the several tubes need not be similar in plan shape, It is not
57、uncommon that some of the individual tubes one of the strengths and one of the weaknesses of the system.</p><p> This special weakness of this system, particularly in framed tubes, has to do with the concep
58、t of differential column shortening. The shortening of a column under load is given by the expression</p><p><b> △=∑fL/E</b></p><p> For buildings of 12 ft (3.66m) floor-to-floor d
59、istances and an average compressive stress of 15 ksi (138MPa), the shortening of a column under load is 15 (12)(12)/29,000 or 0.074in (1.9mm) per story. At 50 stories, the column will have shortened to 3.7 in. (94mm) les
60、s than its unstressed length. Where one cell of a bundled tube system is, say, 50stories high and an adjacent cell is, say, 100stories high, those columns near the boundary between .the two systems need to have this diff
61、erential defl</p><p> Major structural work has been found to be needed at such locations. In at least one building, the Rialto Project, Melbourne, the structural engineer found it necessary to vertically p
62、re-stress the lower height columns so as to reconcile the differential deflections of columns in close proximity with the post-tensioning of the shorter column simulating the weight to be added on to adjacent, higher col
63、umns.</p><p> 結構系統(tǒng)抵抗橫向荷載</p><p><b> 常用的結構體系</b></p><p> 與負載檢測成千上萬kips ,很少有房的設計,高層建筑的過于復雜的想法。事實上,更好的高層建筑中的普遍特征簡單的思路和清晰的表達。</p><p> 但這并不意味著沒有余地大的想法。事實上,這是
64、與這種大的思想,新的家庭高層建筑的發(fā)展。也許更重要的是,新概念,但在幾年前已經(jīng)司空見慣在當今的技術。</p><p> 忽略了一些概念,有關的材料嚴格的建設,最常用的結構系統(tǒng)用于高層建筑可歸納如下:</p><p><b> 1 .矩抗張。</b></p><p> 2 .支撐框架,包括偏心支撐框架。</p><p&g
65、t; 3 .剪力墻,包括鋼板剪力墻。</p><p><b> 4 .筒中筒結構。</b></p><p><b> 5 .筒中筒結構。</b></p><p> 6 .核心的互動結構。</p><p> 7 .蜂窩或捆綁管系統(tǒng)。</p><p> 特別是最近的趨
66、勢更為復雜的形式,但在反應還需要增加剛度抵制軍隊從風和地震,最高層建筑結構體系已經(jīng)建立起來的組合框架,支撐bents ,剪力墻,和相關系統(tǒng)。此外,在高建筑物,多數(shù)是由互動元素在三維陣列。</p><p> 結合的方法,這些要素是非常重要,設計過程中的高層建筑。這些組合的需要演變?yōu)轫憫h(huán)保,功能和成本的考慮,以便提供有效的結構,挑起建筑發(fā)展到一個新的高度。這并不是說,富有想象力的結構設計可以創(chuàng)造偉大的建筑。與此相
67、反,許多例子,罰款架構已經(jīng)建立,只有適度的支持,結構工程師,而只有精細結構,而不是偉大的建筑,可開發(fā)的天才和領導才能的的建筑師。在任何情況下,最好都需要制定一個真正特殊的設計高層建筑。</p><p> 雖然全面的討論,這七個系統(tǒng)通常適用于文學,值得進一步討論的是在這里。本質的設計過程是分布在整個討論。</p><p><b> 矩抗框架</b></p>
68、;<p> 也許,最常用的系統(tǒng)在低到中等高樓大廈,目前抗內,特點是線性的橫向和縱向聯(lián)系成員基本上是在其關節(jié)僵硬。這種幀被用作一個獨立的系統(tǒng)或與其他系統(tǒng),以便提供必要的抵抗水平荷載。在高的高層建筑,該系統(tǒng)很可能會發(fā)現(xiàn)不合適的一個獨立的系統(tǒng),這個,因為難以調動足夠的剛度下的天才和領導才能的建筑師。在任何情況下,最好都需要制定一個真正特殊的設計高層建筑。</p><p> 雖然全面的討論,這七個系統(tǒng)通
69、常適用于文學,值得進一步討論的是在這里。本質的設計過程是分布在整個討論。</p><p><b> 矩抗框架</b></p><p> 也許,最常用的系統(tǒng)在低到中等高樓大廈,目前抗內,特點是線性的橫向和縱向聯(lián)系成員基本上是在其關節(jié)僵硬。這種幀被用作一個獨立的系統(tǒng)或與其他系統(tǒng),以便提供必要的抵抗水平荷載。在高的高層建筑,該系統(tǒng)很可能會發(fā)現(xiàn)不合適的一個獨立的系統(tǒng),這個
70、,因為難以調動足夠的剛度下的側向力。</p><p> 分析可以通過壓力, STRUDL ,或主機的其他適當?shù)挠嬎銠C程序;分析,所謂的門戶方法懸臂法沒有發(fā)生在今天的技術。</p><p> 由于固有的靈活性柱/梁相交,并且由于初步設計的目標應該是突出的弱點的系統(tǒng),這是不尋常使用中心到中心尺寸為框架的初步分析。當然,在后者的設計階段,一個現(xiàn)實的評估關節(jié)變形是必不可少的。</p>
71、;<p><b> 支撐框架</b></p><p> 的支撐框架,內在比目前更嚴厲的抗內,發(fā)現(xiàn)也更廣泛地應用到更高的高樓大廈。該系統(tǒng)的特點是線性橫向,縱向和對角線成員,連接簡單,或在其關節(jié)僵硬。這是常用的與其他系統(tǒng)的高大建筑物和作為一個獨立的系統(tǒng)在低到中等高樓大廈。</p><p> 雖然使用結構鋼支撐框架中是很常見,混凝土框架結構更可能的較大規(guī)
72、模的品種。</p><p> 特別感興趣的領域的高地震活動是利用偏心支撐框架。</p><p> 再次,分析可通過壓力, STRUDL ,或任何一個一系列兩年或三年量綱分析的計算機程序。再次,中心到中心尺寸常用的初步分析。</p><p><b> 剪力墻</b></p><p> 該剪力墻是又向前邁出的一步沿著
73、進步的時候,更嚴厲的結構系統(tǒng)。該系統(tǒng)的特點是比較薄,通常(但并不總是)具體內容,提供了結構強度和建設職能分開。</p><p> 在高層建筑中,剪力墻體系往往有一個相對高縱橫比,也就是說,他們的身高往往是比較大的寬度。張力缺乏系統(tǒng)的基礎,任何結構性因素是有限的能力抵抗傾覆力矩的寬度系統(tǒng)和重力負載支持因素。限于狹隘傾覆,一個明顯的使用該系統(tǒng),它具有必要的寬度,是在外墻建設,那里的要求是保持小窗戶。</p&g
74、t;<p> 剪力墻結構鋼,一般加筋對屈曲的一個具體的覆蓋,已發(fā)現(xiàn)的應用在剪切載荷是很高的。該系統(tǒng),更經(jīng)濟的內在比鋼支撐,特別是有效地執(zhí)行剪切載荷下通過高樓層的地區(qū)立即級以上。該系統(tǒng)的TEM的進一步利用具有高韌性的功能特別重要的地區(qū)的地震活動。</p><p> 分析剪力墻體系是復雜的,因為不可避免的存在大開口通過這些墻壁。初步分析可能的桁架類推,有限元法,或利用專有的計算機程序設計考慮的互動,
75、或耦合的剪力墻。</p><p><b> 框架或支撐管</b></p><p> 的概念框架或支撐,或演變成支撐管的技術與IBM大廈在匹茲堡,但隨后立即與雙110層塔樓的世界貿易中心,紐約和其他一些建筑。系統(tǒng)特點是立體框架,支撐框架或剪力墻結構,形成一個封閉的表面或多或少圓柱的性質,但幾乎所有計劃配置。因為這些欄目的抵制側向力放在盡可能從cancroids的制度
76、,但總的轉動慣量的增加和剛度是非常高的。</p><p> 分析管狀結構進行三維概念,或二維類推,在可能的情況下,兩者方法,它必須能夠核算的影響剪力滯后。</p><p> 在場的情況下剪力滯后,發(fā)現(xiàn)第一次在飛機結構,是一種嚴重的限制,剛度框架管。有限的概念最近應用框架管剪切60故事。設計師們已經(jīng)制定了各種技術減輕剪力滯影響,最明顯的使用帶桁架。該系統(tǒng)的應用在建筑物發(fā)現(xiàn)也許40stor
77、ies及以上。然而,除了可能的審美考慮,帶桁架干擾幾乎每一個建設職能與外墻;的桁架放在往往機械樓層,玉米粥的反對設計師的機械系統(tǒng)。然而,作為一個符合成本效益的結構系統(tǒng),帶桁架運作良好,并有可能找到繼續(xù)批準設計師。無數(shù)的研究已經(jīng)設法優(yōu)化所在地的這些桁架,與最佳位置非常依賴數(shù)量的桁架提供。經(jīng)驗表明,然而,這些位置所提供桁架優(yōu)化機械系統(tǒng)和審美的考慮,作為經(jīng)濟學的結構體系是高度敏感,不帶支架的位置。</p><p>&l
78、t;b> 筒中筒結構</b></p><p> 管狀框架系統(tǒng)動員每欄外墻抵制過度轉向和剪切力。該term'tube在tube'is基本上不言自明的,第二次環(huán)列,環(huán)圍繞中心服務核心的建設,是作為一種內在的框架或支撐管。的目的,第二管是增加阻力的轉折點,增加側向剛度。管子不必進行同一性質,也就是說,一個管可以制定,而其他可能支撐。</p><p> 在審
79、議這一系統(tǒng),重要的是要清楚了解之間的差異剪切和彎曲部分的撓度,正在采取的條款從梁類推。在框筒,剪切部分撓度與彎曲變形的柱子和梁(即網(wǎng)的框筒) ,而彎曲部分與軸向縮短和延長欄(即法蘭的對框筒)。在支撐管,剪切撓度的組成部分是與軸向變形的對角線而彎曲部分的撓度與軸向縮短和延長欄。</p><p> 繼梁類推,如果飛機的表面保持飛機(即樓板),然后軸向應力欄目外管,正在進一步形成軸線,將大大大于軸向應力內胎。然而,在
80、筒中筒的設計,在優(yōu)化,軸向應力內圈欄可作為高,甚至更高,比軸向應力外環(huán)。這種似是而非的異常與不同的剪切部分的剛度兩個系統(tǒng)之間。這是最簡單的不足立場在內胎設想作為支撐(即剪切激烈),而管外管被視為一個框架(即剪切靈活)管。</p><p><b> 核心互動結構</b></p><p> 核心的互動式結構是一種特殊情況的筒中筒,其中兩個管耦合與某種形式的三維空間內。
81、事實上,該系統(tǒng)是經(jīng)常使用,其中剪切剛度的外管是零。美國鋼鐵大廈,匹茲堡,說明了系統(tǒng)的非常好。在這里,內胎是一個支撐框架,外管沒有剪切剛度和兩個系統(tǒng)耦合如果他們被視為系統(tǒng)通過直線的“帽子”的結構。請注意,外部欄將不當模仿如果他們被視為系統(tǒng)通過直線的“帽子”的基礎;這些列,也許是15 %,更嚴厲的,因為它們遵循彈性曲線的支撐核心。還注意到,軸向力與側向力的內在列從緊張壓縮的高度,管,與拐點在5月8日的高度管。外柱,當然,執(zhí)行相同的軸向力側向
82、載荷下的充分高度的列,因為列,因為剪切剛度的系統(tǒng)是接近于零。</p><p> 空間結構支腿或桁架梁,連接內胎的外管,位于往往在幾個層面的建設。 AT & T的總部是一個例子,一個驚人的一系列互動內容:</p><p> 1 .結構體系是94英尺(二十八點六米)寬, 196英尺(五十九點七米)長,六零一英尺(一百八十三點三米)高。</p><p> 2 .兩個
83、內胎提供,每個三十一英尺(九點四米) 40英尺(一十二點二米) ,中心九零英尺(二十七點四米)除了在長期的方向建設。</p><p> 3 .在內胎已作好在短期內的方向,但與零剪切剛度的長期方向。</p><p> 4 .一個單一的供應外管,其中環(huán)繞周邊的建設。</p><p> 5 .外管是目前抗框架,但與零剪切剛度的center50ft (十五點二米)每個
84、只要雙方。</p><p> 6 .空間桁架結構的帽子提供頂部的建設。</p><p> 7 .類似的空間桁架位于底部的建設</p><p> 8 .整個大會是橫向支持的基礎上對雙鋼板管,因為剪切剛度的外管到零的基礎上建設。</p><p><b> 細胞結構</b></p><p>
85、一個典型的例子了蜂窩結構的西爾斯大廈,芝加哥,捆綁筒結構的9個獨立管。雖然西爾斯大廈包含九個幾乎完全相同管的基本結構體系具有特殊的申請建筑形狀不規(guī)則,如幾個管不必形狀類似的計劃,這并不少見,一些個人管的優(yōu)勢之一,并一個弱點的系統(tǒng)。</p><p> 這一個特殊的弱點這一制度,特別是在管內,已經(jīng)這樣做的概念差別柱縮短??s短一欄下,給出了負載的表達</p><p> △ = ∑fL /電子
86、</p><p> 建筑物的12英尺(三點六六米)落地式地板的距離,平均壓應力15 ksi ( 138MPa ) ,縮短一欄下的負荷是15 ( 12 )( 12 ) / 29000或0.074in (一點九毫米)的故事。在50層,該列將縮短到3.7英寸( 94毫米)小于其輕聲長度。如果一個細胞的捆綁管系統(tǒng),也就是說, 50stories高,相鄰的細胞,也就是說, 100stories高,這些柱子之間的邊界附近。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑外文翻譯--超高層建筑結構橫向風荷載效應
- 外文翻譯--超高層建筑結構橫向風荷載效應
- 外文翻譯--超高層建筑結構橫向風荷載效應
- 外文翻譯--超高層建筑結構橫向風荷載效應
- 外文翻譯--超高層建筑結構橫向風荷載效應.doc
- 外文翻譯--超高層建筑結構橫向風荷載效應.doc
- 建筑專業(yè)外文翻譯
- 土建專業(yè)畢業(yè)設計外文翻譯--抗側向荷載的結構體系
- 外文翻譯---抗側向荷載的結構體系
- 外文翻譯---抗側向荷載的結構體系
- 建筑專業(yè)外文翻譯--智能建筑
- 外文翻譯--- 抗側向荷載的結構體系
- 土建外文翻譯---抗側向荷載的結構體系
- 建筑結構外文翻譯
- 土木外文翻譯--抗側向荷載的結構體系
- 建筑設計,橫向邊框架組合荷載計算及結構設計
- 高層結構建筑外文翻譯
- 建筑結構外文翻譯.doc
- 建筑結構和建筑過程外文翻譯
- 建筑外文翻譯---高層結構與鋼結構
評論
0/150
提交評論