版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、<p><b> 附錄一:外文原文</b></p><p> Super capacitors - An Overview</p><p> Key words: Electrostatic capacitor; Electrolytic capacitor; Ceramic capacitor; Electrical double layer cap
2、acitor; Super Capacitor</p><p> INTRODUCTION</p><p> This paper offers a concise review on the renaissance of a conventional capacitor to electrochemical double layer capacitor or super capaci
3、tor. Capacitors are fundamental electrical circuit elements that store electrical energy in the order of microfarads and assist in filtering. Capacitors have two main applications; one of which is a function to charge or
4、 discharge electricity. This function is applied to smoothing circuits of power supplies, backup circuits of microcomputers, and timer circui</p><p> An electrochemical capacitor (EC), often called a Super
5、capacitor or Ultra capacitor, stores electrical charge in the electric double layer at a surface-electrolyte interface, primarily in high-surface-area carbon. Because of the high surface area and the thinness of the doub
6、le layer, these devices can have very a high specific and volumetric capacitance. This enables them to combine a previously unattainable capacitance density with an essentially unlimited charge/discharge cycle life. The
7、oper</p><p> The concept of storing electrical energy in the electric double layer that is formed at the interface between an electrolyte and a solid has been known since the late 1800s. The first electrica
8、l device using double-layer charge storage was reported in 1957 by H.I. Becker of General Electric (U.S. Patent 2,800,616).Unfortunately, Becker’s device was impractical in that, similarly to a flooded battery, both elec
9、trodes needed to be immersed in a container of electrolyte, and the device was never co</p><p> Becker did, however, appreciate the large capacitance values subsequently achieved by Robert A. Rightmire, a c
10、hemist at the Standard Oil Company of Ohio (SOHIO), to whom can be attributed the invention of the device in the format now commonly used. His patent (U.S. 3,288,641), filed in 1962 and awarded in late November 1966, and
11、 a follow-on patent (U.S. Patent 3,536,963) by fellow SOHIO researcher Donald L. Boos in 1970, form the basis for the many hundreds of subsequent patents and journal arti</p><p> This technology has grown i
12、nto an industrywith sales worth severalhundred million dollars per year. It is an in dustry that is poised today for rapid growth in the near term with the expansion of power quality needs and emerging transportation app
13、lications.</p><p> Following the commercial introduction of NEC’s Super Capacitor in 1978, under licence from SOHIO, EC have evolved through several generations of designs. Initially they were used as back-
14、up power devices for v is for cells ranging in size from small millifarad size devices with exceptional pulse power performance up to devices rated at hundreds of thousands of farads, with systems in some applications op
15、erating at up to 1,500 volts. The technology is seeing increasingly broad use, replacing batt</p><p> Early ECs were generally rated at a few volts and had capacitance values measured from fractions of fara
16、ds up to several farads. The trend today in some cases and in others complementing their performance.</p><p> The third generation evolution is the electric double layer capacitor, where the electrical char
17、ge stored at a metal/electrolyte interface is exploited to construct a storage device. The interface can store electrical charge in the order of Farad. The main component in the electrode construction is activated carbo
18、n. Though this concept was initialized and industrialized some 40 years ago, there was a stagnancy in research until recent times; the need for this revival of interest arises due to t</p><p> Figure 1. Sch
19、ematic presentation of electrostatic capacitor, electrolytic capacitor and electrical double layer capacitor.</p><p> EDLCs, however suffer from low energy density. To rectify these problems, recently resea
20、rchers try to incorporate transition metal oxides along with carbon in the electrode materials. When the electrode materials consist of transition metal oxides, then the electrosorption or redox processes enhance the val
21、ue of specific capacitance ca. 10 -100 times depending on the nature of oxides. In such a situation, the EDLC is called as super capacitor or pseudo capacitor . This is the fourth generation c</p><p> 2. EX
22、PERIMENTAL PART</p><p> The invention of Leiden jar in 1745 started the capacitor technology; since then, there has been tremendous progress in this field. In the beginning, capacitors are used primarily in
23、 electrical and electronic products, but today they are used in fields ranging from industrial application to automobiles, aircraft and space, medicine, computers, games and power supply circuits. Capacitors are made fro
24、m two metallic electrodes (mainly Si) placed in mutual opposition with an insulating material (die</p><p> C = S/d (1)</p><p> where C(F) is the electrostatic
25、capacity, the dielectric constant of the dielectric, S (cm2) the surface area of the electrode and d (cm) the thickness of the dielectric. The charge accumulating principle can be described as follows: when a battery is
26、connected to the capacitor, flow of current induces the flow of electrons so that electrons are attracted to the positive terminal of the battery and so they flow towards the power source. As a result, an electron defici
27、ency develops at the positiv</p><p> The capacitance output of these silicon based capacitors is limited and has to cope with low surface-to volume ratios of these electrodes. To increase the capacitance, a
28、s per eq., one has to increase to or S and decrease; however the value is largely determined by the working voltage and cannot be tampered. When aiming at high capacitance densities, it is necessary to combine the mutua
29、l benefits achieved with a high permittivity insulator material and an increased effective surface area. With S</p><p> 3. ELECTROLYTIC CAPACITORS</p><p> The next generation capacitors are th
30、e electrolytic capacitors; they are of Ta, Al and ceramic electrolytic capacitors. Electrolytic capacitors use an electrolyte as conductor between the dielectrics and an electrode. A typical aluminum electrolytic capacit
31、or includes an anode foil and a cathode foil processed by surface enlargement and or formation treatments. Usually, the dielectric film is fabricated by anodizing high purity Al foil for high voltage applications in bori
32、c acid solutions. The t</p><p> There are two types of tantalum capacitors commercially available in the market; wet electrolytic capacitors which use sulfuric acid as the electrolyte and solid electrolytic
33、 capacitors which use MnO2 as the solid electrolyte. Though the capacitances derived from both Ta and Al capacitors are the same, Ta capacitors are superior to Al capacitors in temperature and frequency characteristics.
34、For analog signal systems, Al capacitors produce a current-spike noise which does not happen in Ta capacit</p><p> The history of development of electrolytic capacitors which were mass produced in the past
35、as well as today is presented by S. Niwa and Y. Taketani . Many researchers try to improve the performance of these electrolytic capacitors by modifying the electrode or electrolyte. Generally, the increases in effective
36、 surface area (S) are achieved by electrolytic etching of aluminum substrate before anodization, but now it faces with the limit. It is also very difficult to decrease d because the d value</p><p> A cerami
37、c capacitor is a capacitor constructed of alternating layers of metal and ceramic, with the ceramic material acting as the dielectric. Multilayer ceramic capacitors (MLCs) typically consist of ~100 alternate layers of el
38、ectrode and dielectric ceramics sandwiched between two ceramic cover layers. They are fabricated by screen-printing of electrode layers on dielectric layers and co-sintering of the laminate. Conventionally, Ag-Pd is used
39、 as the electrode material and BaTiO3 is used as the</p><p> The other ceramic materials that have been identified and used are CaZrO3, MgTiO3, SrTiO3 etc. A typical 10 F MLC is a chip of size (3.2 x 1.6 x
40、1.5 mm). Mn, Ca, Pd , Ag etc are some of the other internal electrodes used. Linear dielectrics and antiferroelectrics based o strontium titante have been developed for high voltage disk capacitors. These are applicable
41、for MLCs with thinner layers because of their high coercive fields. One of the most critical material processing parameters is the degr</p><p> The other types of capacitors are film capacitors which use th
42、in polyester film and polypropylene film as dielectrics and meta-glazed capacitors which incorporate electrode plates made of film vacuum evaporated with metal such as Al. Films can be of polyester, polypropylene or poly
43、carbonate make. Also capacitors are specified depending on the dielectric used such as polyester film capacitor, polypropylene capacitor, mica capacitor, metallized polyester film capacitor etc.</p><p> 4.
44、DOUBLE LAYER CAPACITORS</p><p> Electric/electrochemical double layer capacitor (EDLC) is a unique electrical storage device, which can store much more energy than conventional capacitors and offer much hig
45、her power density than batteries. EDLCs fill up the gap between the batteries and the conventional capacitor, allowing applications for various power and energy requirements i.e., back up power sources for electronic dev
46、ices, load-leveling, engine start or acceleration for hybrid vehicles and electricity storage generated fr</p><p> Figure 2. Charge storage mechanism of an EDLC cell under idle and charged conditions.</p
47、><p> Fig. 2 shows the mechanism of charge storage in an EDLC cell and Fig. 3 shows the configuration of an typical EDLC cell. There are two main types of double layer capacitors as classified by the charge st
48、orage mechanism: (i) electrical double-layer capacitor; (ii) electrochemical double layer capacitor or super/pseudo capacitor. An EDLC stores energy in the double-layer at the electrode/electrolyte interface, whereas the
49、 super capacitor sustains a Faradic reaction between the electrode and the el</p><p> Figure 3. Typical configuration of an EDLC cell</p><p> There are two general directions of interest. One
50、is the long term goal of the development of electrical propulsion for vehicles, and the other is the rapid growth of portable electronic devices that require power sources with maximum energy content and the lowest possi
51、ble size and weight.</p><p> 5. CONCLUSIONS</p><p> According to a market survey by Montana, super capacitors are becoming a promising solution for brake energy storage in rail vehicles. The e
52、xpected technological development outside railway sector is also shown to be highly dynamic: diesel electric vehicles, catenary free operation of city light rail, starting system for diesel engines, hybrid-electric cars,
53、 industrial applications, elevators, pallet trucks etc. The time horizon expected for development is next 5 to 10 years. The main developmen</p><p> · long life time</p><p> · increa
54、se of the rated voltage</p><p> · improvements of the range of operating temperature</p><p> · increase of the energy and power densities</p><p> Very recently, hybrid
55、car is introduced in the market but it is turned to be very expensive and out of common man’s reach. Shortage and cost of fossil fuels already instigated alternate technologies viable for traction purposes. In such a sit
56、uation, EDLCs are also useful to store energy generated from non-conventional energy sources. A future possibility of service centers set up for EDLC supply similar to petrol (as on date) is not far as the main setbacks
57、in technology development may take a d</p><p><b> 附錄二:外文譯文</b></p><p><b> 超級電容器-概述</b></p><p> 關鍵詞:靜電電容,電解電容器,陶瓷電容器,雙電層 ,電容器,超級電容器</p><p><
58、;b> 引言</b></p><p> 本文為電化學雙層電容器或超級電容器提供在一臺常規(guī)電容器,簡明的介紹新生的電化學雙電層電容器或超級電容器。電容器是存放電能并且協(xié)助過濾的根本電路元素。 電容器有二個主要應用; 其中之一是充電或釋放電的作用。這個作用適用于電源平流濾波電路,微型計算機備用電路和利用期間充電或釋放電的定時器電路。其他是阻攔DC流程的作用。這個作用適用于提取或消滅特殊頻率的過濾
59、器。這是其中不可或缺的優(yōu)秀電路所需的頻率特性。電解電容是在充分的標度商業(yè)化的下一代電容器。他們類似電池在細胞建筑,但是陽極和負極材料依然保持不變。他們是鋁,鉭和兩個陶瓷電容電解質的地方與他們所使用的液體固體分離器/ 對稱的電極。</p><p> 電化學電容器(EC),往往被稱為超級電容器或超級電容,存儲電荷的雙層電荷在1層表面電解質界面,主要在高電位表面的碳。由于高電位表面是薄的雙重層,所以這些設備可以有一個
60、非常高的比和體積電容。這使得他們能夠結合以前無法實現的電容用無限的電荷密度/放電循環(huán)壽命。每單元的工作電壓,只受擊穿電位電解質的影響,通常<1或“<3伏的每個細胞水性或有機電解質分別。</p><p> 該存儲的概念電力能源雙電層這是形成于界面之間的固體電解質和一直都知道自19世紀末期。第一電氣設備使用雙層充電儲存在報告1957年H.I.貝克爾的通用電氣(美國專利2800616)。不幸的是,貝克爾的
61、設備是不切實際的,同樣一個充斥電池,電極都需要沉浸在一個容器電解質,并且該設備從未商業(yè)化。</p><p> 貝克爾那樣做了,但是隨后發(fā)現電容值已經被標準石油化學家公司俄亥俄州(索奧)的羅伯特A賴特邁爾發(fā)明并且現在正在普遍使用。他的專利(美國3288641),在1962年年底提出并獲1966年11月,和一個后續(xù)專利(美國專利3536963)由資深研究員索奧唐納德L.布斯在1970年,形式為基礎隨后的專利和期刊數
62、百文章涉及ec技術的所有方面。</p><p> 這項技術已經發(fā)展成為一個行業(yè)銷售價值數1.0億美元每年。這是一個行業(yè),這是今天并且準備在不久的將來快速增長,長期與擴張,需要的電能方面的專門人才。</p><p> 隨著商業(yè)的引進,NEC公司的超級電容器在1978年,根據從索奧那里拿到的牌照并且進行了一些演變,通過了幾個世代的設計。起初,他們被用作后備電源裝置揮發(fā)性時鐘芯片和互補金屬氧
63、化物半導體(CMOS)的計算機記憶。但許多其他申請出現在之前的30年,包括便攜式無線通信,增強電能質量的分布式發(fā)電系統(tǒng),工業(yè)驅動器電源,并高效率電動車輛的能源儲存電動車)和混合(混合電動汽車)電動汽車。總體而言,內部細胞的獨特屬性經常補充其他電力來源的弱點如電池和燃料電池。</p><p> 早期的內部電容一般在幾伏特額定電容值計算,并從分數法拉達數的法拉。這個趨勢今天是在電容大小不等的小毫法,脈沖功率大小與特
64、殊設備性能高達百倍額定設備成千上萬的法拉,在一些應用系統(tǒng)工作在高達1500伏。該技術是看到越來越廣泛的使用,取代在某些情況下,電池和其他補充會優(yōu)化他們的表現。</p><p> 第三代演變是雙電層電容器,電荷被存放在金屬或電解質接口被利用修建存貯設備。 接口可能存放電荷按~法拉的順序。主要成份在電極建筑是被激活的碳。 雖然這個概念初始化了并且工業(yè)化了大約40年前,研究停滯不前,直到最近時期; 由于對利益的需要復
65、蘇,如目前的需求增加電能儲存數碼電子設備、需要非常短的大功率脈沖可能由雙電層電容器履行的可植入的可移植的醫(yī)療設備和中止或者在車牽引的起動操作。他們是補充電池,因為它們能提供高功率密度和能量密度低。 他們也有長于電池壽命和具有更高的能量密度比常規(guī)電容器。 這導致了電化學電容器連接與燃料電池或電池所謂的混合電荷存儲設備的新概念。這些電容器用炭和水電解質的電極材料主要用于有機陽極和陰極,都可以商業(yè)化和日間使用。圖1是在他們的設計和建筑上提出描
66、述基本的區(qū)別的電容器的三種類型。</p><p> 圖1.概要介紹靜電電容器、電解電容和雙層電容器。</p><p> EDLCs,受到低能源密度的影響。要矯正這些問題,研究員最近設法與在電極材料的碳一起加入過渡金屬氧化物。電極材料包括過渡金屬氧化物,當電極材料組成的過渡金屬氧化物,然后電吸附或氧化還原加強過程的CA值比電容(10 -100倍取決于性質)在這種情況下,EDLC被稱為su
67、per capacitor或pseudo capacitor。 這是第四代電容器。 超級電容器的表現同時結合二種能量儲存設備,即非法拉第負責在雙電層電容器電容和法拉第充電過程類似此案中的電池。用于內存保護的EC設備的在電子電路市場年年是大約150-200百億美元。 對ECs的新的潛在的申請包括便攜式的電子設備市場、電能質量市場,特別是由于分布式發(fā)電和低排放混合動力汽車,公共汽車和卡車。有一些對和超級電容器有關的電容發(fā)表的評論。以目前的情
68、況,對電化學雙層電容器的演變從開始的簡單靜電電容器進行總結。</p><p><b> 2. 實驗部分 </b></p><p> 自1745年發(fā)明的萊頓瓶的電容技術開始;,從那以后,在這個領域有巨大的進展。 一開始,電容器主要在電子和電子產品使用,但是他們今天擴大了范圍,從工業(yè)應用的領域到汽車、航空器和空間、醫(yī)學、計算機、比賽和電源電路。 電容器由在與一份絕緣材
69、料(電介質)的相互反對(主要Si)被做安置的二個金屬電極在積累的電荷電極之間。 與電容器相關的基本的等式是:</p><p> C = S/d (1)</p><p> C (F)是靜電容量、電介質的介電常數,S(cm2)電極的表面和d(cm)電介質的厚度。 原則上積累的電荷可以被描述如下: 當電池被連接到電容器時,電流
70、流誘導流電子,使電子被吸引到電池的正極,因此他們流動往電源。 結果,缺電子開發(fā)在正面邊,變得帶陽電荷,并且電子節(jié)余發(fā)展為消極邊,變得帶負電荷。 這電子流程繼續(xù),直到二個電極之間的電位差變得相等與電池電壓。 因而電容器得到充電。一旦去除電池,電子從消極邊流動到另一邊,缺失電子; 這個過程導致釋放。常規(guī)電容器產生電容在與50到400 V.各種各樣的材料的電壓范圍的0.1到1 F范圍內例如紙(u1.2-2.6),石蠟(u1.9-2.4),聚乙
71、烯(u2.2-2.4),多苯乙烯(u2.5-2.7),硬橡膠(u2-3.5),聚乙烯(3.1-3.2),水硫磺(u,2-4.2),塊滑石瓷(u6-7), Al瓷(8-10), mica(u,5-7),并且被絕緣的礦物油(2.2-2.4)用來做電容器的電介質。</p><p> 這些芯片的輸出電容的電容是有限的,并且必須應付表面對這些電極容量比率的低落。若需要增加電容。必須增加或S和減少; 然而使用電壓主要取決于
72、價值,并且不可能被篡改。當針對高電容密度時,與高電容率絕緣體材料和增加的有效的表面結合達到的互惠是必要的。 使用Si作為基體材料,電化學蝕刻產生有效的表面積。這材料表面得到放大,是通過擴大二個數量級并與未腐蝕表面比較。大孔硅電化學形成了用于制備高寬比傳統(tǒng)的電容。在增加具體電容的常規(guī)電容器的修改的研究工作也過程中。最近報道了大約30倍電容密度硅/鋁 /氧化鋅: Si電化學上被腐蝕成多孔一個的鋁電容器。 辨認的另一個方式增加電極的表面將形成
73、正極被形成的氧化物(Al, Ta); 然而,陶瓷電容器是基于高介電常數而不是電極區(qū)域。</p><p><b> 3. 電解電容</b></p><p> 下一代電容器是電解電容; 他們是Ta、Al和陶瓷電解電容。 電解電容使用電解質作為在電介質和電極之間的指揮。一個典型的鋁電解電容器包括陽極箔及一個陰極箔,由其擴大加工和表面處理或形成。通常情況下,電介質薄膜制備
74、由高純度鋁陽極氧化膜在硼酸的解決方案為高電壓應用。電介質薄膜的厚度與鋁電解電容的使用電壓有關。在切開對具體大小根據設計規(guī)格之后,層壓制品組成陽極箔,陰極箔這是反對的陽極箔和電介質膜分隔的中間人。陽極和陰極之間的箔,是提供分隔的一個元素。分隔元素電解質在一個被覆蓋的金屬包裹,沒有電解電容的任何電子特征,直到完全地浸洗和安置,圓柱形金屬護套封裝封閉裝備結束。 此外,密封材料由有彈性橡膠制成,是一個被插入,被覆蓋的包裹,該套包和套包的開放式的
75、繪圖部分。電解鋁電容器為汽車、航空器、航天器、計算機、個人計算機顯示器、主板和其他電子主要使用提供電源。</p><p> 有鉭電容器的二種類型在市場上買得到; 電解電容器,使用硫酸為電解液,使用二氧化錳作為固體電解質。雖然電容Ta和Al電容器是相同的,但是Ta電容器在溫度和頻率特性上比Al電容器優(yōu)越。為模擬信號系統(tǒng),鋁電容器產生電流尖峰噪音,但在Ta電容器不發(fā)生釘噪聲。 換句話說, Ta電容器為需要高穩(wěn)定性特
76、征的電路更受歡迎。Al電解電容的總全世界生產共計三十八億美元, 其中99%是濕型。固體鉭電解電容器不同,固體電解質材料是有機物,一個功能聚合物和一個有機半導體。其次,MnO2是電解質材料的組成,在電介質層表面被合成,由電解綜合形成。在此以后,正極和負極電極組裝好,完成電子元件。 然而,這些電解電容電容在范圍0.1到10,電壓25F到50 V。</p><p> 在電解電容的發(fā)展的歷史中,S. Niwa和Y. T
77、aketani提出大量生產。 許多研究員設法經過修改電極或電解質改進這些電解電容的表現。通常,增加有效面積(S是實現鋁電解蝕刻基板),在陽極氧化,但現在它面臨限制。減少d也是非常難的,因為D價值主要決定于工作電壓。這種情況下,綜合電介質層數增量是形成可能會通過有價值化合物。MnO2的替換原先的電解質是由于它有更高的傳導性; 芳香磺酸鹽離子作為充電補償的摻雜物離子。鋁固體電解電容器與蝕刻鋁箔為陽極,聚苯胺/鋁作為陰極和polypyrrro
78、le23作為電介質。Masuda通過電化學正極化,迅速熄滅等得到了高電容Al鈦合金箔。 許多研究員嘗試了合金的另一個組合例如Al-Zr, Al-Si, Al-Ti, Al-Nb and Al-Ta綜合氧化膜。 Al2O3- (Ba0.5Sr0.5TiO3)和Al2O3- Bi4Ti3O12綜合氧化膜在低壓被銘刻的鋁芯的也被被認為是類似的。Ta電解電容的Nb Ta Al也被嘗試了當陽極材料。</p><p> 一
79、個陶瓷電容,陶瓷電容與金屬構造和層交替陶瓷材料作為電介質的。陶瓷電容(通常由一層陶瓷與覆蓋層之間交替兩個電極和電介質陶瓷夾著)。典型的多層陶瓷電容器(MLCs)包括電極和電介質陶瓷。他們通過放映式打印在電介質層數的電極層和焊接層制造壓制品。按常規(guī),AgPd作為電極材料,BaTiO3作為陶瓷的電介質使用。 2000年以前, MLCs市場在與通信的指數發(fā)展的步幅增長。 他們生產電容范圍在10 F (通常范圍Ta和Al電解電容); 他們在高頻
80、率應用上是非常有用的。從歷史上看,陶瓷電容器是一種雙端非極性設備。經典陶瓷電容器是圓盤電容器。這個設備把晶體管的使用日期提早,廣泛地使用了在真空管設備(即無線電接收機)。從1930,經過20世紀50年代和20世紀50年代的分離晶體管設備到20世紀80年代。在2007年,陶瓷圓盤電容器在電子設備的普遍使用,它提供高容量和小尺寸,在同類中有很高的性價比。</p><p> 其他發(fā)現了的采用陶瓷材料,使用了的其他陶瓷
81、材料的是CaZrO3、MgTiO3, SrTiO3等。一個典型10 F MLC是 (3.2 x 1.6 x 1.5 mm) 大小的芯片。Mn、Ca、Pd,Ag等使用的是某些其他內部電極。基于線性電介質已開發(fā)出高壓電容器磁盤。這些層較薄的MLCs與其適用是因為他們的高強制性領域。 其中一個關鍵是材料加工。要注意同類混合在泥漿的添加劑的參數。粘結劑分布在綠色陶瓷上,表面程度粗糙,尺寸精細,鎳粉綠色,廣告片堆積沉積等工藝技術發(fā)揮了至關重要的研
82、究作用。任何一個這些事實,如果處理不當,會導致設備的失敗。例如,提供5 m厚實的綠色板料roughess,給0.5m是必須的,以便與內在鎳電極的一個光滑的接觸面可以建立。這是一個電場非常重要的因素,避免濃度,波峰,其中充電電極的排放,加速,故障會導致短路或失敗。常規(guī)板料或打印方法有有一個技術極限在1 m電介質附近; 為了進一步減少厚度,可以使用如,化學氣相沉積,濺射薄膜技術,等離子噴涂等。</p><p> 其
83、他類型的電容器是使用稀薄的聚酯薄膜,使用薄的聚酯薄膜和聚丙烯薄膜作為電介質和元釉電容器的電極板納入了真空蒸鍍薄膜與金屬,如鋁。薄片可以是聚酯,聚丙烯或聚碳酸酯作。此外電容指定取決于介質使用,例如聚酯薄膜電容器,聚丙烯電容器,云母電容器,金屬化聚酯薄膜電容器等。</p><p><b> 4. 雙層電容器</b></p><p> Electric/electroc
84、hemical雙層電容器(EDLC)是獨特的電子存貯設備,比常規(guī)電容器比電池可能存放更多能量和提供更大的功率密度。 即EDLCs從太陽或風能填補電池和常規(guī)電容器之間的空白,允許對各種各樣的力量和能量需要,備用電源的申請電子設備的,裝載成水平,引擎混合車和引起的電存貯的開始或者加速度。 EDLC運作根據雙重層數電容的原則在電荷在電極表面被積累的電極或電解質接口,并且安排相反充電離子在電解質邊。</p><p>
85、圖2.一個EDLC細胞的電荷存儲機制在懶惰和被充電的情況下 </p><p> 圖2顯示電荷存儲機制在EDLC細胞和圖3的顯示一個典型的EDLC細胞的配置。 有雙層電容器的二種主要類型,如,由電荷存儲機制分類: (1)電子雙重層數電容器; (ii)電化學雙層電容器或超級或者偽電容器。 EDLC在雙重層數存放能量在電極或電解質接口,而超級電容器承受在電極和電解質之間的感應電流的反應在一個適當的潛在的窗口里。 因
86、而為細胞的建筑用于的電極材料前的主要是碳材料,當為后者時,電極材料包括過渡碳金屬氧化物或混合物和金屬氧化物或者聚合物。電解質可以是含水或非水的根據EDLC細胞的建筑方式。</p><p> 圖3.典型的配置EDLC細胞 </p><p> 有兩個值得關注的大方向。 一個是長遠的發(fā)展目標:電力推進車輛,而另一種是:與最大能量內含的電源和最低的可能的大小和重量便攜式的電子設備的迅速增長。
87、</p><p><b> 5.結論</b></p><p> 據蒙大拿州市場調查,超級電容器正在成為一個在鐵路車輛制動能量儲存有前途的解決手段。鐵路部門的技術發(fā)展也證明是預期以外的高度動態(tài)的:柴油電動車,接觸網的城市輕軌的自由運作,啟動柴油發(fā)動機,混合動力電動汽車,工業(yè)應用,電梯系統(tǒng),托盤車等,時間發(fā)展范圍預期是未來5到10年。主要發(fā)展目標將是:?使用壽命長&
88、lt;/p><p> ?增加的額定電壓的工作溫度范圍 </p><p> ?提高對能源和功率密度·</p><p> 最近,混合動力汽車引入了市場,但它非常昂貴,超出了人的承受范圍。短缺和礦物燃料的成本已經激發(fā)了以可行的替代技術為目的的商業(yè)活動。在這種情況下,EDLCs也是有用的從非傳統(tǒng)能源產生的能量的存儲。EDLC供應的服務中心設定的未來可能是設立雙電
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電氣專業(yè)畢業(yè)設計外文翻譯
- 電氣專業(yè)畢業(yè)設計外文翻譯
- 電氣專業(yè)畢業(yè)設計外文翻譯9
- 電氣專業(yè)畢業(yè)設計外文翻譯9
- 電氣專業(yè)畢業(yè)設計外文翻譯7
- 電氣專業(yè)畢業(yè)設計外文翻譯 10
- 電氣專業(yè)畢業(yè)設計外文翻譯--防雷接地
- 電氣畢業(yè)設計外文翻譯
- 電氣專業(yè)畢業(yè)設計外文翻譯--小區(qū)配電設計
- 電氣專業(yè)畢業(yè)設計外文翻譯--防雷接地.docx
- 電氣自動化類專業(yè)畢業(yè)設計(論文)課題
- 電氣專業(yè)畢業(yè)設計外文翻譯--變壓器
- 電氣專業(yè)畢業(yè)設計外文翻譯--變壓器
- 電氣專業(yè)畢業(yè)設計外文翻譯--變壓器
- 電氣類畢業(yè)設計外文翻譯
- 電氣類畢業(yè)設計外文翻譯3
- 電氣工程專業(yè)畢業(yè)設計外文翻譯共27頁
- 動畫專業(yè)畢業(yè)設計外文翻譯
- 水泥專業(yè)畢業(yè)設計---外文翻譯
- 汽車專業(yè)--畢業(yè)設計外文翻譯
評論
0/150
提交評論