版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p> 畢業(yè)設(shè)計(jì)(論文)外文資料翻譯</p><p> 系 部: 機(jī)械工程系 </p><p> 專 業(yè): 機(jī)械制造及自動(dòng)化 </p><p> 姓 名: </p><p> 學(xué) 號(hào):
2、 </p><p> 外文出處: Journal of Materials Processing Technology,159(2005),418–425. </p><p> 附 件: 1.外文資料翻譯譯文;2.外文原文。 </p><p> 附件1:外文
3、資料翻譯譯文</p><p> 新型四分區(qū)錐形壓邊力摩擦輔助拉深的工藝</p><p> 摘要:本文提出了一種摩擦輔助拉深的新技術(shù)。金屬壓邊圈設(shè)計(jì)可分為兩層:一層為不動(dòng)層,或稱基層,由四個(gè)5°錐角的平面組成;另一層為移動(dòng)層,分為四個(gè)錐形部分。在適當(dāng)?shù)膲哼吜ο拢@四個(gè)部分能通過一種專門設(shè)計(jì)的壓緊工具勻速?gòu)较蛞苿?dòng)到模腔,這種壓邊裝置的主要功能是利用板料和壓邊圈之間的在有效拉深方向
4、上的摩擦力,就如在Maslennikov過程中利用的橡膠圈的功能。使用一個(gè)輔助的金屬?zèng)_壓器在拉深過程中在液壓缸的幫助下提供一個(gè)恒定的拉深力來實(shí)現(xiàn)有效的拉深變形。所提出工藝的優(yōu)缺特點(diǎn)主要研究拉深的機(jī)構(gòu)和拉深條件的影響。雖然成功制造拉深比率為3.76的深杯狀體已驗(yàn)證了當(dāng)前技術(shù)的可行性,然而,提高拉深效率還需要進(jìn)一步研究。</p><p> 關(guān)鍵詞 金屬板料成型 摩擦輔助拉深 拉深 分塊壓邊圈</p&g
5、t;<p><b> 1. 介紹</b></p><p> 在傳統(tǒng)的拉深法中,第一階段的拉深很難超過單位杯高度與直徑比率為2.2的拉深比率極限。提出的提高變形極限的解決方案一般分為三類:改變需成型金屬板的材料特性;改變應(yīng)力狀態(tài);改變摩擦狀態(tài)?;谶@些基本解決方案,已提出了很多特殊工藝來提高拉深比率極限[1-10]。使用這些工藝,在材料流動(dòng)應(yīng)力可控制在材料極限強(qiáng)度以下時(shí)來獲
6、得巨大的塑性張力。在這些拉深工藝中,所謂的Maslennikov工藝[11]是一種特殊的方式,其巧妙的利用置于杯形件中的橡膠圈作為壓力介質(zhì)產(chǎn)生毛坯拉深變形。該過程屬于上述的第三類方案,即改變摩擦的狀態(tài)。不同于傳統(tǒng)方法,該工藝?yán)妹靼宀暮拖鹉z圈之間的摩擦力實(shí)現(xiàn)深拉深。由于該拉深方式是通過徑向的壓力實(shí)現(xiàn)的,就能避免凸模圓角部分的破裂。但是,對(duì)于薄板,凸緣部分仍然存在圓周破裂。這種破裂曾被認(rèn)為是由于壓力沿橡膠圈和毛坯[12,13] 的半徑方
7、向分布不均勻而產(chǎn)生的防滑點(diǎn)。Maslennikov工藝的另一個(gè)缺陷是,因?yàn)檎T導(dǎo)摩擦力不足而導(dǎo)致高變形阻力毛坯不能拉深。此外,橡膠的使用壽命短,而拉深又要求有較高的壓力。</p><p> 為了克服這些缺陷, Hassan et al [14] 。提出了新的建議:用一個(gè)分為四部分的壓邊圈取代在Maslennikov工藝中使用的橡膠圈。該技術(shù)進(jìn)行深拉深的可行性已被驗(yàn)證,但是,有一個(gè)關(guān)鍵點(diǎn)約束著該裝置的應(yīng)用。那就是由
8、于凸模材料流入壓邊分區(qū)之間的空隙而產(chǎn)生起皺,如圖1(a)所示。這個(gè)問題可以通過在這四個(gè)分區(qū)[15]之間的間隙中插入四小楔子得以解決。新的壓邊圈分為八個(gè)部分(四小楔子和四個(gè)拉深分區(qū))取得了良好的效果。但是不幸的是,在使用薄板材的情況下,拉深部分和四個(gè)楔子的邊緣部分由于局部過強(qiáng)的剪切力而出現(xiàn)裂痕,如圖1((b)中所示。</p><p> 在目前的研究論文中最新提出,用一個(gè)分為四部分的雙層錐形壓邊圈來消除局部褶皺和嚴(yán)
9、重剪切變形區(qū)域這些不足。該論文細(xì)致探討了變形機(jī)制和拉深條件的影響,并證實(shí)了現(xiàn)今深拉深技術(shù)的可行性。</p><p> ?。╝四分塊壓邊圈下的局部起皺、b八分塊壓邊圈下的局部剪切區(qū))</p><p> 圖1 原摩擦輔助拉深觀察到的缺陷</p><p> 2. 四分區(qū)錐形壓邊圈的構(gòu)造和拉深機(jī)制</p><p> 圖2(a) 所示為上述錐
10、形壓邊圈示意圖。它由一個(gè)固定的底座和四個(gè)成5°微斜錐形角的位面組成。拉深部分能勻速的在底座的錐形面上沿半徑方向的滑動(dòng)。四個(gè)滑配合的楔片被用來引導(dǎo)這些拉深部分在固定底座上的運(yùn)動(dòng)。</p><p> 理解拉深機(jī)制和壓邊圈的復(fù)合運(yùn)動(dòng)至關(guān)重要。拉深過程的第一步中,當(dāng)兩個(gè)端面分區(qū)在A方向上呈沿半徑方向位移時(shí),變形便開始了,如圖2(b)所示。另外兩個(gè)部分在B方向上反向進(jìn)行復(fù)合運(yùn)動(dòng),即與圖2(b)中所示的拉深方向相
11、反,向下和沿半徑方向向外運(yùn)動(dòng)。因此,毛坯板材和模具在A方向上上升,而在B方向上,如圖2(d)所示,毛坯板材和兩個(gè)拉深部分并沒有接觸。此時(shí),邊緣有50%并不受制于壓邊圈。另一方面,A方向上的兩個(gè)拉深部分不斷上升至模具的開口處,兩者與毛坯板材有輕微的接觸,如圖2(c)所示。A方向上產(chǎn)生的摩擦力迫使毛坯變形并移向模具的開口處,同時(shí),B方向上的兩個(gè)拉深部分產(chǎn)生一個(gè)反向的摩擦力使毛坯變形。所以,這種技術(shù)成功地消除了八個(gè)部分組成的壓邊圈帶來的局部強(qiáng)
12、烈剪切變形。然而,B方向上的毛坯邊緣由于受到圓周壓力作用而出現(xiàn)了褶皺。</p><p> 在第二步拉深中,B方向上的壓邊圈做沿半徑方向換位轉(zhuǎn)移,與此同時(shí),在A方向上的兩個(gè)拉深部分以于第一步中相似的方式做復(fù)合運(yùn)動(dòng)。因此,第一步中B方向上產(chǎn)生的褶皺被同時(shí)校正了。重復(fù)上述兩個(gè)步驟,就能成功制造出深杯形件。</p><p> 圖2 四分區(qū)錐形壓邊圈的組成和運(yùn)動(dòng)示意圖</p>&
13、lt;p><b> 3. 實(shí)驗(yàn)準(zhǔn)備</b></p><p> 3.1. 測(cè)試設(shè)備</p><p> 圖3是試驗(yàn)設(shè)備的主要組成部分的示意圖。毛坯變形需要足夠的壓邊力F1, 而沖壓力F2主要起到提高杯形件尺寸準(zhǔn)確性和幫助變形拉深的作用。合適的壓邊力F1由壓力閥17控制,合適的沖力F2由壓力閥16控制。拉深部件沿半徑方向在0-2毫米范圍內(nèi)的位移運(yùn)動(dòng)由測(cè)微儀1
14、3和四個(gè)調(diào)整銷11控制。壓緊工具 5 應(yīng)該在每次拉深操作后旋轉(zhuǎn)90度來改變強(qiáng)制性半徑方向替代運(yùn)動(dòng)的方向和毛坯與壓邊圈之間的壓力。實(shí)驗(yàn)裝置裝配在一臺(tái)水壓機(jī)上。該水壓機(jī)能軸向進(jìn)行多范圍速度的運(yùn)動(dòng),并能產(chǎn)生最大為100kN的壓力,而一臺(tái)單獨(dú)的泵所能產(chǎn)生的最大沖壓力也只有10 kN。試驗(yàn)裝置尺寸和最佳力度見表1。</p><p> 1拉深滑塊,2液壓缸,3,液壓,4擠壓墊,5壓緊工具,6模具,7 毛坯,8錐形邊壓邊圈,
15、9壓邊基座,10沖頭, 11調(diào)整銷, 12彈簧, 13測(cè)微儀, 14模具, 15工作臺(tái),16壓力閥,17減壓閥。</p><p> 圖3 拉深試驗(yàn)設(shè)備示意圖;</p><p> 表1 工具尺寸和實(shí)驗(yàn)工況</p><p> 3.2.實(shí)驗(yàn)材料和實(shí)驗(yàn)條件</p><p> 使用0.5毫米厚度的柔軟的鋁((Al-CO)制毛坯作為試驗(yàn)材料。
16、表2中所列數(shù)據(jù)為單軸張力測(cè)試中得到的材料的屬性常數(shù)F, n和r。當(dāng)毛坯的直徑分別為86和110時(shí),拉深比率由2.87變?yōu)?.67。</p><p> 為了研究毛坯變形的情況,在毛坯表面預(yù)先標(biāo)注出2毫米的同心圈,如圖4(a)所示。其中,最小的圓直徑為28毫米,最大的為80毫米。此外,還在毛坯表面標(biāo)注出A, B, C三個(gè)沿半徑的方向。在奇數(shù)/偶數(shù)次拉深時(shí),部件分別在A/B方向上進(jìn)行替換移動(dòng),而部件C和壓邊圈各部分的
17、銜接邊界重合。</p><p> 為了研究在杯側(cè)壁的格柵的變形,在直徑為110毫米的毛坯上標(biāo)示出間隔為5毫米的同心圓和五條間隔為22.5 °圓周角的半徑,如圖4(b)所示。45 °和-45°的半徑方向與指示邊界C重合,而零度方向?yàn)锽方向,該方向上在偶數(shù)次拉深時(shí)受力變形。毛坯板材和壓邊圈之間干燥的摩擦有利于增加產(chǎn)生的摩擦力。不過,特氟隆影片(PTFE)被用作在毛坯板材和模具之間的固體
18、潤(rùn)滑劑,來減小摩擦力。 </p><p> (a) 拉深率2.87,板徑86mm (b) 拉深率3.67,板徑110 mm</p><p> 圖4 板材上標(biāo)明的圓形柵格和方向</p><p> 表2 柔軟的鋁制毛坯的機(jī)械特性和尺寸</p><p> 4. 結(jié)果討論(略)</p><p> 5. 目
19、前的深沖壓技術(shù)的可行性</p><p> 圖5、圖6為已拉深杯形件;前者在50次拉深之后側(cè)壁C方向(±45°方向)出現(xiàn)弧坑狀缺陷。在制作過程中,C方向上板材的運(yùn)動(dòng)比B、A方向上的程度大,因此板材撞擊到模具開口處的帶扣而在沖壓和模具相分離時(shí)產(chǎn)生凹陷。然而,這個(gè)凹陷是可以被消除的:每隔一次拉深,把毛坯板材就銜接邊緣方向旋轉(zhuǎn)45°。這個(gè)簡(jiǎn)單的技術(shù)幫助制造出了64毫米高3.67比率的杯形件
20、,如圖14所示。這樣的杯形件需要經(jīng)過100次的拉深,但是也證實(shí)了目前的依靠摩擦力的深拉深技術(shù)具有可行性。</p><p> 圖5 C向上的弧坑狀缺陷</p><p> 圖6 成功的杯形件例子(β=3.67,杯形件高度=64 mm,N=100)</p><p><b> 6. 結(jié)論</b></p><p>
21、在借助摩擦力實(shí)現(xiàn)深拉深的技術(shù)方面,提出了一種新的方法來實(shí)現(xiàn)深杯形件的制造,即借助一個(gè)由四個(gè)錐形部分組成的壓邊圈。這種新設(shè)備克服了傳統(tǒng)的四部分或八部分構(gòu)成的壓邊圈會(huì)產(chǎn)生局部褶皺和劇烈的剪切變形等問題。拉深機(jī)制和拉深條件的影響也被細(xì)致的觀察了。當(dāng)壓邊力大于80kN,輔助沖壓力大于4kN時(shí),拉深效率有顯著提高。這種技術(shù)能成功制造出比率為3.67的深杯形件,這也證實(shí)了目前改良技術(shù)的可行性。由于每次拉深壓邊圈沿半徑方向的位移被限制在1毫米,制造過
22、程需要100次拉深。但是,在該工藝中,自始至終只使用了一套剛性工具,加工時(shí)間也可由增加每分鐘的沖壓次數(shù)來縮短。因此,該工藝便于小批量深杯形件的生產(chǎn)。</p><p> 附件2:外文原文(復(fù)印件)</p><p> A novel process on friction aided deep drawing using</p><p> tapered blan
23、k holder divided into four segments</p><p><b> Abstract</b></p><p> A new technique on friction aided deep drawing has been proposed. A metal blank holder was designed to be of two
24、 layers: stationary layer or base with four planes of 5? taper angle and moving layer divided into four tapered segments. Under appropriate blank holding force, these four segments can move radically to the die opening w
25、ith a constant speed by using a specially designed compression tool. The main function of this developed blank holding device is adopting the frictional force between t</p><p> 1. Introduction</p>&l
26、t;p> The limiting drawing ratio achieved by the ?rst stage drawing in conventional deep drawing method seldom exceeds 2.2 which corresponds to the cup height to diameter ratio of about unity. Solutions proposed for i
27、ncreasing the forming limit generally fall into three categories; change</p><p> in the material properties of the sheet metal being formed, change in the stress state and change in the frictional state. Ba
28、sed on these fundamental solutions, many special processes have been proposed to increase the limiting drawing ratio [1–10]. In these processes, large plastic strains could be achieved when the low stress of material can
29、 be controlled in the range below the ultimate strength of material. Among these deep drawing processes the so-called Maslennikov process [11] is a unique </p><p> medium to generate drawing deformation of
30、a blank. This process belongs to the third category, i.e. change in the frictional state; the frictional force between the blank sheet and the rubber ring is used to achieve deep drawing unlike the conventional method. B
31、ecause the drawing of the blank</p><p> is carried out by the radial compressive force, the fracture at the punch pro?le portion can be avoided. However, for thin sheets, circumferential fracture has been o
32、bserved at the ?ange portion. The reason behind such fracture was attributed to the existence of a non-slip point at the ?ange</p><p> due to the difference in the radial velocity distributions of the rubbe
33、r ring and blank [12,13]. As another defect of the Maslennikov process, blanks of high deformation resistance cannot be drawn because the induced frictional force is not sufficient. Moreover, the lifetime of the rubber i
34、s short and very high pressure is required for drawing.</p><p> To overcome these decencies, Hassan et al. [14] have proposed to use a blank holder divided into four segments instead of the rubber ring used
35、 in the Maslennikov process.The possibility of the deep drawing with such technique has been con?rmed, however, there was one criticism limiting the application of such proposed device. That is occurrence of wrinkles due
36、 to ?owing of ?ange material into the gaps between the blank holder segments as shown in Fig. 1(a).Such a problem was overcome by ?tting f</p><p> Fig. 1. Defects observed in the previous friction aided dee
37、p drawing methods.</p><p> in Fig. 1(b) was observed due to the localized intensive shear deformation at the boundaries between the drawing segments and the four small wedges.</p><p> In the p
38、resent paper, a two-layered tapered blank holder divided into four segments was newly proposed to eliminate the defects of localized wrinkling and intensive shear deformation regions. The deformation mechanism and the ef
39、fects of drawing conditions are mainly investigated in detail and the possibility of the present deep drawing method is con?rmed.</p><p> Fig. 2. Schematic of construction and movement of tapered blank hold
40、er divided into four segments.</p><p> drawing segments that have similar planes of slightly taper angle of 5?, the drawing segments can slide radially under a constant speed over the tapered surfaces of th
41、e stationary base. Four keys with sliding ?t are used for guiding the motion of these segments on the stationary base.</p><p> It is important to understand the drawing mechanism and the compound motion of
42、the blank holder segments. In the ?rst drawing step, deformation starts when two facing segments receive radial displacement in the A-direction as shown in Fig. 2(b). The other two segments in the B-direction move in the
43、 reverse direction with compound motion; downward and radially outward opposite to the drawing direction as shown in Fig. 2(d). Due to this action, the blank sheet and the die in the A-direction are li</p><p&g
44、t; In the second drawing step, the blank holder segments in the B-direction receive radial displacement, while the other two segments in the A-direction move in a compound motion in a similar manner to the ?rst drawing
45、step. As a resultwrinkles generated in the B-direction in the ?rst drawing step will be simultaneously corrected. Therefore, complete and successful deep cups can be obtained by repeating these two steps to a certain num
46、ber of drawings.</p><p> 3. Experimental setup</p><p> 3.1. Test equipment</p><p> Fig. 3 is a schematic diagram which shows the essential elements of the test equipment. A suffi
47、cient blank holding force F1 is mainly required for the deformation of blank, while the punch force F2 is mainly added to enhance the dimensional accuracy of the drawn cup and to help partially the drawing deformation. T
48、he blank holding force F1 is controlled by the pressure valve 17 to obtain appropriate force, while the punch force F2 is controlled by the valve 16 for the proper use. The radial displ</p><p> Fig. 3. Sche
49、matic diagram showing equipment used for deep drawing test; 1-Press ram, 2-Hydraulic cylinder, 3-Oil pressure, 4-Dummy block, 5-Compression tool, 6-Die, 7-Blank, 8-Tapered blank holder, 9-Blank holder stationary base, 10
50、-Punch, 11-Adjusting pin, 12-Spring, 13-Dial gauge, 14-Container, 15-Die set, 16-Control valve, 17-Relief valve.</p><p><b> Table 1</b></p><p> Tool dimensions and experimental con
51、ditions</p><p> ments. The test rig is assembled on a hydraulic press, which has multi-ranges of axial speeds and maximum compression force of 1000 κN, while the maximum punch force given by a separate pump
52、 is 10 kN. The test rig dimensions and the optimum force conditions are listed in Table 1.</p><p> 3.2. Test material and experimental conditions</p><p> Soft aluminum (Al–O) blanks of 0.5mm t
53、hickness was used as a testing material. The material constants F, n and r.</p><p><b> Table 2</b></p><p> Mechanical properties and dimensions of soft aluminum blanks (Al–O)</p
54、><p> determined from uneasily tension test are listed in Table 2.The blank diameter was changed as 86 and 110 which give drawing ratios of 2.87 and 3.67.</p><p> In order to investigate the defo
55、rmation behavior of blank,concentric circles of 2mm apart were initially marked on the blank surface as shown in Fig. 4(a). The smallest circle diameter is 28mm and the biggest one is 80mm. In addition to that, three rad
56、ial directions A, B and C are marked on the blank surface. Directions A and B receive imposed radial displacement during the odd and the even numbers of drawing respectively, while the direction C corresponds to the boun
57、dary between blank holder se</p><p> To study the distortion of grids at cup side wall, concentric circles of 5mm apart and ?ve radial lines of 22.5? angular distances were marked on the blank of 110mm in d
58、iameter as shown in Fig. 4(b). The radial directions 45? and ?45? correspond to the boundary directions C, while zero direction is located to be in consistent with B-direction which receives imposed deformation at the ev
59、en number of drawing.Dry friction condition between blank sheet and blank holder segments is necessary to incre</p><p> Fig. 4. Circular grids and prescribed directions marked on blanks.</p><p>
60、; 4. Results and discussion</p><p> 5. Possibility of the present deep drawing process</p><p> Examples of drawn cups are shown in Figs. 5 and 6;the former shows defects like a crater observe
61、d at the cup sidewall at the direction C (±45? directions) after 50 times drawing operations. At this stage of drawing, the radial in ?ow of material in the C-directions is greater than those in the directions B and
62、 A. Therefore, the material coming to the die opening buckles and makes craters in the clearance between punch and die. However, the craters could be eliminated by rotating the blank sheet </p><p> Fig. 5.
63、Craters defect observed in C-directions.</p><p> Fig. 6. An example of a successful cup (β = 3.67, cup height = 64mm,</p><p><b> N = 100).</b></p><p> 6. Conclusions&
64、lt;/p><p> On the friction aided deep drawing process, a blank holder divided into four tapered segments has been newly developed as a method to obtain successful deep cups. This was achieved by overcoming the
65、 defects of localized wrinkling and intensive shear defamation observed when using ?at blank holder divided into four or eight segments developed previously. The drawing mechanism and the effects of drawing conditions ha
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--新型四分區(qū)錐形壓邊力摩擦輔助拉深的工藝
- 外文翻譯--新型四分區(qū)錐形壓邊力摩擦輔助拉深的工藝.doc
- 外文翻譯--新型四分區(qū)錐形壓邊力摩擦輔助拉深的工藝.doc
- 機(jī)械制造專業(yè)外文翻譯
- 變壓邊力拉深工藝的研究.pdf
- 機(jī)械制造專業(yè)畢業(yè)設(shè)計(jì)外文翻譯--制造分析
- 外文翻譯--機(jī)械制造技術(shù)
- 方盒形件拉深壓邊力與摩擦的數(shù)值模擬研究.pdf
- 圓錐形零件極限拉深系數(shù)及合理壓邊力的研究.pdf
- 機(jī)械制造專業(yè)本科畢業(yè)設(shè)計(jì)外文翻譯
- 外文翻譯--機(jī)械制造業(yè).doc
- 筒形件拉深壓邊力研究與變壓邊力裝置設(shè)計(jì).pdf
- 板料拉深成形壓邊力控制研究.pdf
- 外文翻譯--機(jī)械制造業(yè).doc
- 外文翻譯--機(jī)械制造業(yè).doc
- 外文翻譯--機(jī)械制造業(yè).doc
- 圓錐形件拉深成形起皺分析及徑向分塊壓邊工藝研究.pdf
- 外文翻譯--機(jī)械制造業(yè).doc
- 外文翻譯--機(jī)械制造業(yè).doc
- 外文翻譯--機(jī)械制造業(yè).doc
評(píng)論
0/150
提交評(píng)論