版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、Dynamics in a Cournot investment game with heterogeneous playersZhanwen Ding ?, Qiang Li, Shumin Jiang, Xuedi WangFaculty of Science, Jiangsu University, Zhenjiang 212013, PR Chinaa r t i c l e i n f oKeywords:Cournot ga
2、meInvestmentHeterogeneous expectationComplex dynamicsFeedback controla b s t r a c tIn this paper we concern the investment process in a duopoly game played by heteroge-neous players. A discrete and dynamic system is bui
3、lt for the case that a boundedly rationalplayer adjusts its investment decision by the locally marginal profit and a naïve playerchooses its strategy according to the opponent’s action in the previous period. By sta
4、bilityanalysis of the system, we show that the boundary equilibrium is unstable and obtain thestability conditions for the interior equilibrium. Numerical simulations are used to provideevidence for the influence of the
5、model parameters on the system stability and on the com-plicated behaviors in the system evolution. It is shown that the system with varying modelparameters may drive to chaos and the loss of stability may be caused by p
6、eriod doublingbifurcations or Neimark–Sacker bifurcations. It is also shown that the time-delayed feed-back control method can be used to keep the system from instability and chaos. All thenumerical simulations show that
7、 the capital depreciation rate has great influence on thesystem evolution: a smaller depreciation rate has a stronger stabilization effect on the sur-vival of the system and makes the system easier to control from chaos.
8、? 2015 Elsevier Inc. All rights reserved.1. IntroductionThe dynamical behaviors of oligopoly games are complex because every oligopolistic producer in each period must con-sider not only its own decision but also the rea
9、ctions of all other competitors. The earliest model giving a mathematical description of the competition in a duopolistic market was originally introduced by Cournot [1]. In the classic model, each participant uses a na&
10、#239;ve expectation to suppose that the opponents’ output keeps the same level as in the previous period and adopts an output strategy to maximize the expected profit. Many researchers have analyzed the system stability
11、and the complex phenomena in Cournot oligopoly games with this kind of expectation (e.g., [2–9]).In an early work by Bischiy and Naimzadaz [10], a kind of bounded rationality was assumed for the dynamical Cournotgame, wh
12、ere each producer does not have complete knowledge of the market and updates its production by the local profit maximization method. That is, a producer with bounded rationality increases its output if it perceives a pos
13、itive marginal profit and decreases its production if the perceived marginal profit is negative.In recent years, a great amount of work has been done on the dynamical Cournot games with homogeneous or hetero-geneous expe
14、ctations. Bounded rationality assumed in the marginal profit method is related to all producers in the models considering homogeneous expectation (e.g., [10–13]). The models with heterogeneous expectations (naïve, b
15、oundedly rational or adaptive) have been discussed in many other researches (e.g., [14–20]).http://dx.doi.org/10.1016/j.amc.2015.01.0600096-3003/? 2015 Elsevier Inc. All rights reserved.? Corresponding author.E-mail addr
16、ess: dgzw@ujs.edu.cn (Z. Ding).Applied Mathematics and Computation 256 (2015) 939–950Contents lists available at ScienceDirectApplied Mathematics and Computationjournal homepage: www.elsevier.com/locate/amcx2ðt
17、4; 1Þ ¼ aB2 ? B2c2 ? 2bB2 2ð1 ? hÞK2ðt ? 1Þ ? bB1B2ðð1 ? hÞK1ðt ? 1Þ þ x1ðtÞÞ ? 12bB2 2: ð9ÞFrom all the Eqs. (4), (6), (7) and (9), we
18、 finally obtain a nonlinear dynamics with four variables x1; x2 , K1 and K2 :x1ðt þ 1Þ ¼ x1ðtÞ þ ax1ðtÞðaB1 ? B1c1 ? 2bB2 1ðð1 ? hÞK1ðt ? 1Þ
19、4; x1ðtÞÞ?bB1B2ðð1 ? hÞK2ðt ? 1Þ þ x2ðtÞÞ ? 1Þx2ðt þ 1Þ ¼aB2?B2c2?2bB22ð1?hÞK2ðt?1Þ?bB1B2ðð1?hÞK1
20、40;t?1Þþx1ðtÞÞ?12bB22K1ðtÞ ¼ ð1 ? hÞK1ðt ? 1Þ þ x1ðtÞK2ðtÞ ¼ ð1 ? hÞK2ðt ? 1Þ þ x2ðtÞ:8 > &g
21、t; > > > > >> > > > > > :ð10ÞIf we denote Kiðt ? 1Þ by IiðtÞ and hence KiðtÞ by Iiðt þ 1Þ ði ¼ 1; 2Þ, then we can rew
22、rite system (10) as the following standard dynamics:x1ðt þ 1Þ ¼ x1ðtÞ þ ax1ðtÞðaB1 ? B1c1 ? 2bB2 1ðð1 ? hÞI1ðtÞ þ x1ðtÞÞ?bB1B
23、2ðð1 ? hÞI2ðtÞ þ x2ðtÞÞ ? 1Þx2ðt þ 1Þ ¼aB2?B2c2?2bB22ð1?hÞI2ðtÞ?bB1B2ðð1?hÞI1ðtÞþx1ðtÞ
24、2;?12bB22I1ðt þ 1Þ ¼ ð1 ? hÞI1ðtÞ þ x1ðtÞI2ðt þ 1Þ ¼ ð1 ? hÞI2ðtÞ þ x2ðtÞ:8 > > > > > > >
25、> > > > > > :ð11ÞThe nonlinear and discrete system (11) describes a duopoly game where a boundedly rational player and a naïve player make their decisions in a process of dynamical invest
26、ment. In the following section, the stability properties of this model will be discussed.3. The equilibrium points and stabilityIn order to study the qualitative behavior of system (11), we first find out its equilibrium
27、 points, which can be obtained bysetting xiðt þ 1Þ ¼ xiðtÞ and Iiðt þ 1Þ ¼ IiðtÞ in (11) so that the following algebraic system is satisfied:ax1ðtÞ
28、40;aB1 ? B1c1 ? 2bB2 1ðð1 ? hÞI1ðtÞ þ x1ðtÞÞ ? bB1B2ðð1 ? hÞI2ðtÞ þ x2ðtÞÞ ? 1Þ ¼ 0aB2?B2c2?2bB22ð1?hÞI2ð
29、tÞ?bB1B2ðð1?hÞI1ðtÞþx1ðtÞÞ?12bB22? x2ðtÞ ¼ 0x1ðtÞ ? hI1ðtÞ ¼ 0x2ðtÞ ? hI2ðtÞ ¼ 0:8 > > > > &g
30、t;> > > > :ð12ÞSolving the equation system (12), we obtain two equilibrium points:E ¼ 0; hðaB2 ? B2c2 ? 1Þ2bB2 2; 0; aB2 ? B2c2 ? 12bB2 2!;E? ¼ ðx?1; x?2; I?1; I?2Þ;whe
31、rex?1 ¼ hðB1 ? 2B2 þ B1B2ða ? 2c1 þ c2ÞÞ3bB2 1B2; ð13aÞx?2 ¼ hðB2 ? 2B1 þ B1B2ða þ c1 ? 2c2ÞÞ3bB1B22; ð13bÞI? 1 ¼ B1 ? 2B2
32、254; B1B2ða ? 2c1 þ c2Þ3bB2 1B2; ð13cÞI? 2 ¼ B2 ? 2B1 þ B1B2ða þ c1 ? 2c2Þ3bB1B22: ð13dÞE is a boundary equilibrium point and E? is an interior one. In order to
33、 ensure their economic significance, we only con-sider the case that E and E? are nonnegative. Since a; b; c1; c2; B1; B2 and h are all positive parameters, E and E? will be non- negative provided that the following ineq
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- (節(jié)選)外文翻譯--具有不同類型參與人的古諾投資博弈動力學研究
- (節(jié)選)外文翻譯--具有不同類型參與人的古諾投資博弈動力學研究
- (節(jié)選)外文翻譯--具有不同類型參與人的古諾投資博弈動力學研究(英文).pdf
- (節(jié)選)外文翻譯--具有不同類型參與人的古諾投資博弈動力學研究(英文).pdf
- (節(jié)選)外文翻譯--具有不同類型參與人的古諾投資博弈動力學研究(譯文).docx
- 具有不同預(yù)期類型的古諾特投資博弈動力學研究.pdf
- 具有不同類型參與人及時滯結(jié)構(gòu)的雙寡頭博弈動力學分析.pdf
- 有限理性下一類古諾特投資博弈的動力學研究.pdf
- 多組動態(tài)古諾模型的動力學行為研究.pdf
- 外文翻譯---機械臂動力學與控制的研究(英文)
- 電力和可再生資源市場古諾動態(tài)博弈模型及其動力學研究.pdf
- 外文翻譯----高速鉆床動力學分析(英文)
- 外文翻譯--基于系統(tǒng)動力學模型的區(qū)域物流(英文)
- 不同類型醫(yī)療糾紛博弈分析.pdf
- 不同類型投資者參與對定向增發(fā)宣告效應(yīng)的影響研究.pdf
- 蘋果釀酒酵母對不同糖類的發(fā)酵動力學研究[外文翻譯]
- android外文翻譯--在安卓平臺的擊鍵動力學(英文)
- (節(jié)選)汽車工程外文翻譯--基于adamscar的fsae賽車動力學仿真
- (節(jié)選)汽車工程外文翻譯--基于adamscar的fsae賽車動力學仿真
- 不同類型孔隙水壓力的動力效應(yīng)研究.pdf
評論
0/150
提交評論