兩個(gè)互異圓盤(pán)的稠密填充.pdf_第1頁(yè)
已閱讀1頁(yè),還剩34頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、填充和覆蓋理論是組合幾何與離散幾何中的一個(gè)重要分支.關(guān)于填充問(wèn)題有著各種各樣的猜想.關(guān)于圓盤(pán)的填充問(wèn)題的一個(gè)重要猜想是:在全等圓盤(pán)的填充中,密度最大填充可由正六邊形阿基米德鑲嵌中的內(nèi)圓得到,這一猜想直到本世紀(jì)初才得以證明.而對(duì)于兩種不同的圓盤(pán)填充密度的研究至今還未見(jiàn)明顯突破.該文所研究的是半徑為1與2/√(根號(hào))3-1的兩種圓盤(pán)的填充密度.利用歐式空間中正多邊形的(12,12,3)阿基米德鋪砌,借助一個(gè)新函數(shù)t<,s>,通過(guò)對(duì)t<,s>

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論