-
簡介:MATERIALSSCIENCEANDENGINEERINGA5282010622–630CONTENTSLISTSAVAILABLEATSCIENCEDIRECTMATERIALSSCIENCEANDENGINEERINGAJOURNALHOMEPAGEWWWELSEVIERCOM/LOCATE/MSEATHERMODYNAMICANDKINETICMODELINGOFBCCPHASEINTHETI–AL–VTERNARYSYSTEMHWANG,NWARNKEN,RCREED?DEPARTMENTOFMETALLURGYANDMATERIALS,UNIVERSITYOFBIRMINGHAM,EDGBASTON,BIRMINGHAMB152TT,UKARTICLEINFOARTICLEHISTORYRECEIVED7MAY2010RECEIVEDINREVISEDFORM2SEPTEMBER2010ACCEPTED2SEPTEMBER2010KEYWORDSTHERMODYNAMICMOBILITYOPTIMISATIONTI–AL–VABSTRACTATHERMODYNAMICOPTIMISATIONOFTHEORDEREDB2PHASEINTHETI–ALBINARYANDTI–AL–VTERNARYSYSTEMSISCARRIEDOUT,MAKINGUSEOFATWOSUBLATTICEMODELTI,AL,VTI,AL,VASELFCONSISTENTSETOFPARAMETERSISOBTAINEDITISDEMONSTRATEDTHATTHEAVAILABLEEXPERIMENTALDATAFORTHEPHASEEQUILIBRIAAREREPRODUCEDACCURATELYBASEDUPONTHETHERMODYNAMICDRIVINGFORCESCALCULATEDBYTHENEWTHERMODYNAMICDATABASE,INTERDIFFUSIONINTHEDISORDEREDA2PHASEOFTHETERNARYTI–AL–VSYSTEMISASSESSEDANDOPTIMISEDASETOFPARAMETERSDESCRIBINGTHEATOMICMOBILITIESOFTHEDISORDEREDA2PHASEAREGIVEN,WHICHWILLBEUSEFULFORFUTUREQUANTITATIVEMODELSOFPHASETRANSITIONSINVOLVINGTHISPHASE?2010ELSEVIERBVALLRIGHTSRESERVED1INTRODUCTIONTIBASEDALLOYSEXHIBITATTRACTIVELEVELSOFSTRENGTHANDTOUGHNESS,ESPECIALLYWHENJUDGEDONADENSITYCORRECTEDBASISHOWEVER,THEPROPERTIESOFTHESEALLOYSDEPENDSIGNIFICANTLYUPONTHEMANNERINWHICHTHEYAREHEATTREATEDFORTHISREASONITISVITALTOHAVEAGOODUNDERSTANDINGOFTHEMICROSTRUCTURE/PROPERTYRELATIONSHIPSINTHESESYSTEMSTHISISPARTICULARLYTHECASEFORTHERANGEOFHIGHSTRENGTH,HIGHTOUGHNESSTITANIUMALLOYSWHICHRETAINSIGNIFICANTQUANTITIESOFTHEBODYCENTEREDCUBICBCCCRYSTALSTRUCTUREATROOMTEMPERATURE–KNOWNASTHE?ALLOYS–SOMEOFWHICHAREEMERGINGASCANDIDATESFORUSEINTHEAEROSPACESECTORTHERMODYNAMICANDKINETICDATAAREVERYHELPFULFORTHEDESIGNOF?ALLOYS,ASINDEEDFORMANYOTHERENGINEERINGALLOYS,ASVARIOUSKINDSOFPHASEEQUILIBRIAANDPHASETRANSFORMATIONSCANBESIMULATEDTHUSITISIMPORTANTTOOBTAINACOMPLETEANDCOMPREHENSIVEDATABASEFORTHETHERMODYNAMICSANDKINETICMOBILITIESOFTHEBCCPHASEINTHETERNARYTI–AL–VSYSTEMSOFAR,THEREHASBEENONLYLIMITEDANALYSISCARRIEDOUTBYRESEARCHERSONTHISSYSTEMTHEPHASEEQUILIBRIAOFTHETI–AL–VTERNARYSYSTEMWASASSESSEDBYHAYES1,WHOPRESENTEDASCHEMATICLIQUIDUSPROJECTION,APARTIALREACTIONSCHEME,ANDISOTHERMALSECTIONSATSEVERALTEMPERATURESFURTHERPHASEEQUILIBRIAWERECONSIDEREDINTHEMORERECENTASSESSMENTBYRAGHAVAN2INCLUDINGTWOFULLISOTHERMALSECTIONSAT600?CAND900?CINTHISWORKTHEORDEREDB2PHASEWASCONSIDEREDFORTHEFIRSTTIMEATHERMODYNAMICDATABASEFORTHETI–AL–VSYSTEMWASOPTIMISED?CORRESPONDINGAUTHORFAX441214147468EMAILADDRESSESRCREEDBHAMACUK,RREEDBHAMACUKRCREED3WHICHLACKSANYINFORMATIONCONCERNINGTHEORDEREDB2PHASEUNDERCONSIDERATIONHERETHEPARAMETERSFORDISORDEREDA2PHASEARELISTEDINTABLE1KINETICASSESSMENTSHAVEALSOBEENCARRIEDOUTBASEDUPONEXPERIMENTALMEASUREMENTSOFDIFFUSIONPHENOMENAFOREXAMPLE,THEMOBILITIESINTHEA2PHASEHAVEBEENASSESSEDBYCHENETAL4RECENTLY,TAKAHASHIETAL5PUBLISHEDSOMENEWDATAFORINTERDIFFUSIONCOEFFICIENTSINTHEA2PHASE,WHICHREQUIREDTHEUPDATINGOFTHEDATABASEUSINGTHESEDATA,HUANGETAL6ASSESSEDTHEATOMICMOBILITIESFORTHEA2PHASEOFTI–AL–VSYSTEMHOWEVER,THEIRWORK6ISBASEDONANEXTRAPOLATEDTHERMODYNAMICDATABASEFROM7–9WITHOUTTERNARYTHERMODYNAMICPARAMETERSINTHISWORK,THETHERMODYNAMICPARAMETERSWEREOPTIMISEDFORTHEORDEREDB2PHASEINTHETI–ALBINARYANDTHETI–AL–VTERNARYSYSTEMS,ANDKINETICPARAMETERSWEREOPTIMISEDFORTHEDISORDEREDA2PHASEINTHETI–AL–VSYSTEM,RESPECTIVELY2EXPERIMENTALINFORMATION21THEORDER/DISORDERTRANSFORMATIONTHEA2/B2ORDER/DISORDERTRANSFORMATIONHASBEENFOUNDINTHETI–AL–CR–VQUATERNARYSYSTEM10ANDSOMETI–AL–XXCR11,NB12,13,MO13TERNARYSYSTEMSINTHETI–AL–VTERNARYSYSTEM,THEORDEREDB2PHASEHASBEENOBSERVEDUSINGTRANSMISSIONELECTRONMICROSCOPY14ASINGLEPHASEREGIONOFTHEORDEREDB2PHASEHASBEENFOUNDAT1200?C,ANDSOWERETHEPHASEEQUILIBRIABETWEENTHEB2PHASEANDOTHERPHASESBOTHTI3ALANDTIALINTHETEMPERATURERANGEOF600–900?CTHESEPIECESOFEXPERIMENTALINFORMATIONHAVEBEENUSEDINTHEMODELINGWORKREPORTEDHERETHEREISONLYONEBINARYSYSTEMOFRELEVANCETOTHISPROBLEMWHICHCONTAINSTHEA2/B2ORDER/DISORDERTRANSFORMATIONTHE09215093/–SEEFRONTMATTER?2010ELSEVIERBVALLRIGHTSRESERVEDDOI101016/JMSEA201009013624HWANGETAL/MATERIALSSCIENCEANDENGINEERINGA5282010622–630TWOSUBLATTICEMODELISUSEDTI,AL,V05TI,AL,V05FORB2PHASEGB2GA2XIGORDY1IY2I?GORDXI,XI1WHEREGA2XIISTHEGIBBSENERGYOFTHEDISORDEREDA2PHASEPARAMETERSFROM3,ANDTHEDIFFERENCEBETWEENTHELATTERTWOTERMSGORDY1IY2IANDGORDXI,XIISTHEGIBBSENERGYDUETOORDERINGGORDY1IY2IISDETERMINEDBYGORD{Y1IY2I}2?I13?JI1Y1IY2JGIJY1JY2JGJI2?I13?JI13?K1Y1IY1JY2KL0I,JKY1I?Y1JL1I,JK2?I13?JI13?K1Y1IY1JY2KL0KI,JY1I?Y1JL1KI,J2WHEREI,J,KAL,TI,V,ANDGIJ,GJI,L?IJ,K,L?KI,J?0,1INCLUDEORDERINGPARAMETERSOPTIMISEDHEREWHENY1IY2IXI,THEPHASEISDISORDERED32DIFFUSIVITYFORTHECRYSTALLINEPHASES,THETERNARYINTERDIFFUSIONCOEFFICIENTMATRIXISREDUCEDBYCHOOSINGONEELEMENTTOBEDEPENDENTONTHEOTHERTWO40,THUSDNKJ?IIIK?XKXIMI???I?XJ???I?XN?3WHEREN,K,JARETHEDEPENDENT,THEDIFFUSINGANDTHEGRADIENTELEMENT,RESPECTIVELYTHETERMSXI,?I,MIARETHEMOLEFRACTION,CHEMICALPOTENTIALANDMOBILITYOFELEMENTI,RESPECTIVELYTHETERMIIKISTHEKRONECKERDELTAIIK1IFIK,OTHERWISEIIK033MOBILITYACCORDINGTOJONSSON41,THEATOMICMOBILITYINAMULTICOMPONENTPHASECANBEEXPRESSEDBYMBM?BEXP??QBRT?1RT4WHEREM?BISTHEFREQUENCYFACTORANDQBISTHEACTIVATIONENTHALPYTHEFREQUENCYFACTORISCALCULATEDBYM?BEXP?B5BOTH?BANDQBGENERALLYDEPENDONTHECOMPOSITION,TEMPERATUREANDPRESSUREINTHESPIRITOFTHECALPHADAPPROACH42,THEDEPENDENCEONCOMPOSITIONOF?B?BORQBISDESCRIBEDWITHAREDLICH–KISTERPOLYNOMIALACCORDINGTO?B?IXI?IB?I?JIXIXJM?R0R?I,JBXI?XJR?I?JI?KJXIXJXK?S?SIJKS?I,J,KB6WHERETHEPARAMETERS?SIJKAREOBTAINEDBY?SIJKXS1?XI?XJ?XK37020040060080010001200140016001800TEMPERATURE_CELSIUS00204060810MOLE_FRACTIONAL1415161718191920202121/3122/3222232324242525/2626/2727/28/2928/29/30303111001110112011301140115011601170118011901200TEMPERATURE_CELSIUS015020025030035MOLE_FRACTIONALTIAL3TIAL2TI2AL5TIALTI3ALTI3ALHCPB2A2B2A2HCPHCPLIQUIDFIG3THECALCULATEDTI–ALBINARYPHASEDIAGRAMBYTHISWORKVERSUSDIFFERENTDATANOTESOMEDATAAREFORANOTHERPERITECTOIDFORMATIONOF?2PHASE4RESULTSANDDISCUSSION41PHASEEQUILIBRIAUSINGTHECALPHADMETHOD,ASETOFSELFCONSISTENTTHERMODYNAMICPARAMETERSFORTHEORDEREDB2PHASEWASOBTAINED–SEETABLE1–USINGTHETWOSUBLATTICEMODEL43ANDTHEEXPERIMENTALDATAPREVIOUSLYMENTIONEDTHEPHASEDIAGRAMFORTHETI–ALBINARYSYSTEMWHICHFOLLOWSFROMTHISDATASETISGIVENINFIG3THEDASHEDLINEREPRESENTSTHEORDER/DISORDERTRANSFORMATIONBETWEENTHEA2PHASEANDTHEB2PHASETHETRANSFORMATIONTEMPERATUREISPREDICTEDTOCHANGEFROM1200?CTO1400?CASTHECOMPOSITIONCHANGESFROM20TO40ATALTHEORDEREDB2PHASEISSTABILISEDTOHIGHERTEMPERATURESWITHANINCREASEINALCONTENT,CONSISTENTWITHTHEPOSITIVEEFFECTOFALINTHETENDENCYFORORDERING10WITHTHESEOPTIMISEDBINARYPARAMETERS,THETWOPERITECTOIDREACTIONSINVOLVINGTHEORDEREDB2PHASE–?ˇ→?2ANDˇ?2→?–CANBEMODELEDANDTHEPREDICTIONSCOMPAREDWITH
下載積分: 10 賞幣
上傳時間:2024-03-13
頁數(shù): 9
大?。?1.05(MB)
子文件數(shù):
-
簡介:附錄附錄附錄附錄1KINEMATICANDDYNAMICSYNTHESISOFAPARALLELKINEMATICHIGHSPEEDDRILLINGMACHINEABSTRACTTYPICALLY,THETERM‘‘HIGHSPEEDDRILLING’’ISRELATEDTOSPINDLECAPABILITYOFHIGHCUTTINGSPEEDSTHESUGGESTEDHIGHSPEEDDRILLINGMACHINEHSDMEXTENDSTHISTERMTOINCLUDEVERYFASTANDACCURATEPOINTTOPOINTMOTIONSTHENEWHSDMISCOMPOSEDOFAPLANARPARALLELMECHANISMWITHTWOLINEARMOTORSASTHEINPUTSTHEPAPERISFOCUSEDONTHEKINEMATICANDDYNAMICSYNTHESISOFTHISPARALLELKINEMATICMACHINEPKMTHEKINEMATICSYNTHESISINTRODUCESANEWMETHODOLOGYOFINPUTMOTIONPLANNINGFORIDEALDRILLINGOPERATIONANDACCURATEPOINTTOPOINTPOSITIONINGTHEDYNAMICSYNTHESISAIMSATREDUCINGTHEINPUTPOWEROFTHEPKMUSINGASPRINGELEMENTKEYWORDSPARALLELKINEMATICMACHINEHIGHSPEEDDRILLINGKINEMATICANDDYNAMICSYNTHESIS1INTRODUCTIONDURINGTHERECENTYEARS,ALARGEVARIETYOFPKMSWEREINTRODUCEDBYRESEARCHINSTITUTESANDBYINDUSTRIESMOST,BUTNOTALL,OFTHESEMACHINESWEREBASEDONTHEWELLKNOWNSTEWARTPLATFORM1CONFIGURATIONTHEADVANTAGESOFTHESEPARALLELSTRUCTURESAREHIGHNOMINALLOADTOWEIGHTRATIO,GOODPOSITIONALACCURACYANDARIGIDSTRUCTURE2THEMAINDISADVANTAGESOFSTEWARTTYPEPKMSARETHESMALLWORKSPACERELATIVETOTHEOVERALLSIZEOFTHEMACHINEANDRELATIVELYSLOWOPERATIONSPEED3,4WORKSPACEOFAMACHINETOOLISDEFINEDASTHEVOLUMEWHERETHETIPOFTHETOOLCANMOVEANDCUTMATERIALTHEDESIGNOFAPLANARSTEWARTPLATFORMWASMENTIONEDIN5ASANAFFORDABLEWAYOFRETROFITTINGNONCNCMACHINESREQUIREDFORPLASTICMOULDSMACHININGTHEDESIGNOFTHEPKM5ALLOWEDADJUSTABLEGEOMETRYTHATCOULDHAVEBEENOPTIMALLYRECONFIGUREDFORANYPRESCRIBEDPATHTYPICALLY,CHANGINGTHELENGTHOFONEORMORELINKSINACONTROLLEDSEQUENCEDOESTHEADJUSTMENTOFPKMGEOMETRYTHEAPPLICATIONOFTHEPKMSWITH‘‘CONSTANTLENGTHLINKS’’FORTHEDESIGNOFMACHINETOOLSISLESSCOMMONTHANTHETYPEWITH‘‘VARYINGLENGTHLINKS’’ANEXCELLENTEXAMPLEOFA‘‘CONSTANTLENGTHLINKS’’TYPEOFMACHINEISSHOWNIN6RENAULTAUTOMATIONCOMAUHASBUILTTHEMACHINENAMED‘‘URANESX’’THEHSDMDESCRIBEDHEREINUTILIZESAPARALLELMECHANISMWITHCONSTANTLENGTHLINKSDRILLINGOPERATIONSAREWELLINTRODUCEDINTHELITERATURE7ANEXTENSIVEEXPERIMENTALSTUDYOFHIGHSPEEDDRILLINGOPERATIONSFORTHEAUTOMOTIVEINDUSTRYISREPORTEDIN8DATAWASCOLLECTEDFROMHUNDREDSCONTROLLEDDRILLINGEXPERIMENTSINORDERTOSPECIFYTHEPARAMETERSREQUIREDFORQUALITYDRILLINGIDEALDRILLINGMOTIONSAND21EQUATIONSOFMOTIONOFTHEPKMMODULEWITHRIGIDLINKSUSINGCOMPLEXNUMBERREPRESENTATIONOFMECHANISMS12,THEKINEMATICEQUATIONSOFTHETOOLUNITINDICATEDASPART3WHICHINCLUDESTHEPLATFORM,THESPINDLEANDTHETOOLAREDEVELOPEDASFOLLOWSTHEDISPLACEMENTOFTHETOOLISANDWHEREBISTHEDISTANCEBETWEENPOINTBANDPOINTC,RISTHELENGTHOFLINKABTHELENGTHSOFLINKAB,CDANDCEAREEQUALTHEVELOCITYOFTHETOOLISWHERETHEACCELERATIONOFTHETOOLISWHERETHEDYNAMICEQUATIONSOFTHEPKMMODULEAREDEVELOPEDUSINGLAGRANGE’SEQUATIONOFTHESECONDKIND13ASSHOWNINEQ7
下載積分: 10 賞幣
上傳時間:2024-03-16
頁數(shù): 31
大?。?2.44(MB)
子文件數(shù):
-
簡介:DYNAMICSINACOURNOTINVESTMENTGAMEWITHHETEROGENEOUSPLAYERSZHANWENDING?,QIANGLI,SHUMINJIANG,XUEDIWANGFACULTYOFSCIENCE,JIANGSUUNIVERSITY,ZHENJIANG212013,PRCHINAARTICLEINFOKEYWORDSCOURNOTGAMEINVESTMENTHETEROGENEOUSEXPECTATIONCOMPLEXDYNAMICSFEEDBACKCONTROLABSTRACTINTHISPAPERWECONCERNTHEINVESTMENTPROCESSINADUOPOLYGAMEPLAYEDBYHETEROGENEOUSPLAYERSADISCRETEANDDYNAMICSYSTEMISBUILTFORTHECASETHATABOUNDEDLYRATIONALPLAYERADJUSTSITSINVESTMENTDECISIONBYTHELOCALLYMARGINALPROFITANDANA?VEPLAYERCHOOSESITSSTRATEGYACCORDINGTOTHEOPPONENT’SACTIONINTHEPREVIOUSPERIODBYSTABILITYANALYSISOFTHESYSTEM,WESHOWTHATTHEBOUNDARYEQUILIBRIUMISUNSTABLEANDOBTAINTHESTABILITYCONDITIONSFORTHEINTERIOREQUILIBRIUMNUMERICALSIMULATIONSAREUSEDTOPROVIDEEVIDENCEFORTHEINFLUENCEOFTHEMODELPARAMETERSONTHESYSTEMSTABILITYANDONTHECOMPLICATEDBEHAVIORSINTHESYSTEMEVOLUTIONITISSHOWNTHATTHESYSTEMWITHVARYINGMODELPARAMETERSMAYDRIVETOCHAOSANDTHELOSSOFSTABILITYMAYBECAUSEDBYPERIODDOUBLINGBIFURCATIONSORNEIMARK–SACKERBIFURCATIONSITISALSOSHOWNTHATTHETIMEDELAYEDFEEDBACKCONTROLMETHODCANBEUSEDTOKEEPTHESYSTEMFROMINSTABILITYANDCHAOSALLTHENUMERICALSIMULATIONSSHOWTHATTHECAPITALDEPRECIATIONRATEHASGREATINFLUENCEONTHESYSTEMEVOLUTIONASMALLERDEPRECIATIONRATEHASASTRONGERSTABILIZATIONEFFECTONTHESURVIVALOFTHESYSTEMANDMAKESTHESYSTEMEASIERTOCONTROLFROMCHAOS?2015ELSEVIERINCALLRIGHTSRESERVED1INTRODUCTIONTHEDYNAMICALBEHAVIORSOFOLIGOPOLYGAMESARECOMPLEXBECAUSEEVERYOLIGOPOLISTICPRODUCERINEACHPERIODMUSTCONSIDERNOTONLYITSOWNDECISIONBUTALSOTHEREACTIONSOFALLOTHERCOMPETITORSTHEEARLIESTMODELGIVINGAMATHEMATICALDESCRIPTIONOFTHECOMPETITIONINADUOPOLISTICMARKETWASORIGINALLYINTRODUCEDBYCOURNOT1INTHECLASSICMODEL,EACHPARTICIPANTUSESANA?VEEXPECTATIONTOSUPPOSETHATTHEOPPONENTS’OUTPUTKEEPSTHESAMELEVELASINTHEPREVIOUSPERIODANDADOPTSANOUTPUTSTRATEGYTOMAXIMIZETHEEXPECTEDPROFITMANYRESEARCHERSHAVEANALYZEDTHESYSTEMSTABILITYANDTHECOMPLEXPHENOMENAINCOURNOTOLIGOPOLYGAMESWITHTHISKINDOFEXPECTATIONEG,2–9INANEARLYWORKBYBISCHIYANDNAIMZADAZ10,AKINDOFBOUNDEDRATIONALITYWASASSUMEDFORTHEDYNAMICALCOURNOTGAME,WHEREEACHPRODUCERDOESNOTHAVECOMPLETEKNOWLEDGEOFTHEMARKETANDUPDATESITSPRODUCTIONBYTHELOCALPROFITMAXIMIZATIONMETHODTHATIS,APRODUCERWITHBOUNDEDRATIONALITYINCREASESITSOUTPUTIFITPERCEIVESAPOSITIVEMARGINALPROFITANDDECREASESITSPRODUCTIONIFTHEPERCEIVEDMARGINALPROFITISNEGATIVEINRECENTYEARS,AGREATAMOUNTOFWORKHASBEENDONEONTHEDYNAMICALCOURNOTGAMESWITHHOMOGENEOUSORHETEROGENEOUSEXPECTATIONSBOUNDEDRATIONALITYASSUMEDINTHEMARGINALPROFITMETHODISRELATEDTOALLPRODUCERSINTHEMODELSCONSIDERINGHOMOGENEOUSEXPECTATIONEG,10–13THEMODELSWITHHETEROGENEOUSEXPECTATIONSNA?VE,BOUNDEDLYRATIONALORADAPTIVEHAVEBEENDISCUSSEDINMANYOTHERRESEARCHESEG,14–20HTTP//DXDOIORG/101016/JAMC20150106000963003/?2015ELSEVIERINCALLRIGHTSRESERVED?CORRESPONDINGAUTHOREMAILADDRESSDGZWUJSEDUCNZDINGAPPLIEDMATHEMATICSANDCOMPUTATION2562015939–950CONTENTSLISTSAVAILABLEATSCIENCEDIRECTAPPLIEDMATHEMATICSANDCOMPUTATIONJOURNALHOMEPAGEWWWELSEVIERCOM/LOCATE/AMCX2DTT1T?AB2?B2C2?2BB22D1?HTK2DT?1T?BB1B2DD1?HTK1DT?1TTX1DTTT?12BB22D9TFROMALLTHEEQS4,6,7AND9,WEFINALLYOBTAINANONLINEARDYNAMICSWITHFOURVARIABLESX1X2,K1ANDK2X1DTT1T?X1DTTTAX1DTTDAB1?B1C1?2BB21DD1?HTK1DT?1TTX1DTTT?BB1B2DD1?HTK2DT?1TTX2DTTT?1TX2DTT1T?AB2?B2C2?2BB22D1?HTK2DT?1T?BB1B2DD1?HTK1DT?1TTX1DTTT?12BB22K1DTT?D1?HTK1DT?1TTX1DTTK2DTT?D1?HTK2DT?1TTX2DTT8D10TIFWEDENOTEKIDT?1TBYIIDTTANDHENCEKIDTTBYIIDTT1TDI?12T,THENWECANREWRITESYSTEM10ASTHEFOLLOWINGSTANDARDDYNAMICSX1DTT1T?X1DTTTAX1DTTDAB1?B1C1?2BB21DD1?HTI1DTTTX1DTTT?BB1B2DD1?HTI2DTTTX2DTTT?1TX2DTT1T?AB2?B2C2?2BB22D1?HTI2DTT?BB1B2DD1?HTI1DTTTX1DTTT?12BB22I1DTT1T?D1?HTI1DTTTX1DTTI2DTT1T?D1?HTI2DTTTX2DTT8D11TTHENONLINEARANDDISCRETESYSTEM11DESCRIBESADUOPOLYGAMEWHEREABOUNDEDLYRATIONALPLAYERANDANA?VEPLAYERMAKETHEIRDECISIONSINAPROCESSOFDYNAMICALINVESTMENTINTHEFOLLOWINGSECTION,THESTABILITYPROPERTIESOFTHISMODELWILLBEDISCUSSED3THEEQUILIBRIUMPOINTSANDSTABILITYINORDERTOSTUDYTHEQUALITATIVEBEHAVIOROFSYSTEM11,WEFIRSTFINDOUTITSEQUILIBRIUMPOINTS,WHICHCANBEOBTAINEDBYSETTINGXIDTT1T?XIDTTANDIIDTT1T?IIDTTIN11SOTHATTHEFOLLOWINGALGEBRAICSYSTEMISSATISFIEDAX1DTTDAB1?B1C1?2BB21DD1?HTI1DTTTX1DTTT?BB1B2DD1?HTI2DTTTX2DTTT?1T?0AB2?B2C2?2BB22D1?HTI2DTT?BB1B2DD1?HTI1DTTTX1DTTT?12BB22?X2DTT?0X1DTT?HI1DTT?0X2DTT?HI2DTT?08D12TSOLVINGTHEEQUATIONSYSTEM12,WEOBTAINTWOEQUILIBRIUMPOINTSE?0HDAB2?B2C2?1T2BB220AB2?B2C2?12BB22E??DX?1X?2I?1I?2TWHEREX?1?HDB1?2B2TB1B2DA?2C1TC2TT3BB21B2D13ATX?2?HDB2?2B1TB1B2DATC1?2C2TT3BB1B22D13BTI?1?B1?2B2TB1B2DA?2C1TC2T3BB21B2D13CTI?2?B2?2B1TB1B2DATC1?2C2T3BB1B22D13DTEISABOUNDARYEQUILIBRIUMPOINTANDE?ISANINTERIORONEINORDERTOENSURETHEIRECONOMICSIGNIFICANCE,WEONLYCONSIDERTHECASETHATEANDE?ARENONNEGATIVESINCEABC1C2B1B2ANDHAREALLPOSITIVEPARAMETERS,EANDE?WILLBENONNEGATIVEPROVIDEDTHATTHEFOLLOWINGINEQUALITIESHOLDAB2?B2C2?10D14ATZDINGETAL/APPLIEDMATHEMATICSANDCOMPUTATION2562015939–950941
下載積分: 10 賞幣
上傳時間:2024-03-14
頁數(shù): 5
大小: 0.15(MB)
子文件數(shù):
-
簡介:中文中文4100字出處出處JIANGM,HUH,PENGJ,ETALINFLUENCEOFFRACTUREFILLINGONMECHANICALBEHAVIOROFLOESSC//PAVEMENTANDGEOTECHNICALENGINEERINGFORTRANSPORTATIONASCE,2015117126壓實處理對天然黃土力學(xué)性能的影響INFLUENCEOFFRACTUREFILLINGONMECHANICALBEHAVIOROFLOESS蔣明鏡1,胡海軍2,彭建兵3,王鑫鑫41同濟大學(xué)巖土工程博士后,郵編200092;電子郵箱HUHAIJUN163COM2同濟大學(xué)巖土工程博士后,郵編200092;電子郵箱HUHAIJUN163COM3長安大學(xué)巖土工程研究學(xué)院院長,郵編710054;電子郵箱DICEXY_1CHDEDUCN4同濟大學(xué)巖土工程研究生,郵編200092;電子郵箱WANGTIAN753214163COM摘要摘要為了調(diào)查影響壓實黃土和壓實過程中的力學(xué)因素變化,在陜西省涇陽對天然黃土和壓實黃土進行了常規(guī)三軸壓縮試驗(CTC),減壓三軸壓縮試驗(RTC)及恒定含水量條件下的減壓三軸拉伸試驗(RTE)。這次試驗?zāi)M了近地應(yīng)力的固結(jié)壓力,并成功觀測到了不同的破壞類型。在CTC測試中,每份土樣的試驗結(jié)果都表明天然黃土和壓實黃土試件通過應(yīng)變硬化性能和剪切破壞面相互作用。在RTC測試中,每份土樣都出現(xiàn)了應(yīng)變軟化。剪切破壞面出現(xiàn)在黃土試件的共軛面,天然黃土與壓實黃土試件通過剪切破環(huán)面相互作用。在RTE測試中天然黃土樣被破壞,而壓實黃土完好。壓實黃土與天然黃土的剪切強度幾乎相同。簡介簡介中國的黃土高原有大量地層裂縫,尤其是在陜西?。ㄍ醯?989;彭等1992李等2000趙等2009)。魯?shù)热耍?009)和胡等人(2009)對周圍地層裂縫土的力學(xué)性能和物理性能進行了研究。魯?shù)热耍?009)對壓實黃土進行常規(guī)三軸壓縮試驗發(fā)現(xiàn)應(yīng)力應(yīng)變關(guān)系隨著固結(jié)壓力的增加而從應(yīng)變軟化向應(yīng)變硬化轉(zhuǎn)變。由于天然黃土被壓實后的變形方向與壓實的下底位盤整壓力的夾角為60度,所以剪切帶經(jīng)常出現(xiàn)在天然黃土和壓實黃土的接觸面上。江等人用天然黃土,壓實黃土和地裂縫附近的壓槽已經(jīng)被挖掘出來。圖1給出了探槽的橫截面的地質(zhì)情況裂縫的分布和采樣的位置。地圖左下角的陰影部分為地裂縫受壓區(qū),這里可能形成地震區(qū)。其他的小型裂縫是由于產(chǎn)生大型裂縫后產(chǎn)生的水平方向拉應(yīng)力產(chǎn)生的。這些裂縫幾乎是垂直的,裂縫的寬度在1200MM之間,且隨著深度加深而減小。裂縫(F12)下的壓實土樣在105M左右的深度下采集的。天然黃土是馬蘭黃土,顏色為黃色,在57MM左右寬的裂縫處采集的,如圖2所示。天然黃土試件和經(jīng)過壓實處理的黃土試件是為了三軸試驗準(zhǔn)備的。壓實黃土試件和底平面的夾角是45度。一般來說,在隧道建筑過程中應(yīng)力在水平方向遞減。采樣方向參見圖3。CTC和RTC試驗中的試件的采樣方向是接近垂直的;RTE試驗的試件的采樣方向是水平的,這可以確保RTC試驗和RTE試驗中試件應(yīng)力遞減的方向幾乎是相同的。在試件制備過程中,要先對每份試件的初始含水量進行測定。準(zhǔn)備工作完成后,將試件包裹在塑料薄膜中,并放置在潮濕的腔室中。測定含水量后對土樣進行烘干處理或者加濕處理使含水量調(diào)節(jié)到15,然后將試樣包裹在塑料薄膜中再放置潮濕的腔室中至少兩天,以確保水分在試件中均勻分布,許多研究者(張等2006;楊等2010)也用這種方法來制備特定含水量的黃土試件。圖1黃土取樣處裂縫與地質(zhì)剖面圖2取好的土樣
下載積分: 10 賞幣
上傳時間:2024-03-17
頁數(shù): 12
大?。?0.63(MB)
子文件數(shù):
-
簡介:??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????“???????????????????????????????????????????????????????/???/?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????/?????????????????????/???????????????????????????????????????????????????????????????????????,???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????1?????????????I????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????,???6?7?67???6??7?
下載積分: 10 賞幣
上傳時間:2024-03-13
頁數(shù): 4
大?。?0.34(MB)
子文件數(shù):
-
簡介:中文中文4890字MECHANICALPROPERTIESOFHYDROXYLFUNCTIONALIZEDCHLORINATEDPOLYETHYLENEPREPAREDBYINSITUCHLORINATINGGRAFTCOPOLYMERIZATION羥基官能團原位氯化接枝氯化聚乙烯的力學(xué)性能孫瑩瑩萬庚平王寶興趙繼若應(yīng)峰接受2008年1月21日/接受2008年6月3日/發(fā)表在線2008年7月4日施普林格科學(xué)商業(yè)媒體BV2008摘要接枝共聚物是由丙烯酸酯(PHEA)作為分支鏈,氯化聚乙烯(CPE)為骨架組成,CPECGHEA,是由原味氯化接枝共聚物合成的(ISCGC)。這個聚合物具有特殊的分子結(jié)構(gòu)包括短的接枝鏈和豐富的分支點。這個CPECGHEA的力學(xué)性能通過拉伸試驗、差示掃描量熱(DSC),動態(tài)熱學(xué)分析(DMA)進行研究。CPE和CPECGHEA它們拉伸斷裂表面的形態(tài)形成是用掃描電子顯微鏡調(diào)查(SEM)。測試結(jié)果顯示原味接枝共聚物比有差不多相同含氯量的CPE力學(xué)性能有了很大的提高。尤其是在接枝共聚物應(yīng)力應(yīng)變關(guān)系曲線有個廣泛的高峰,意味著高彈性像變形。關(guān)鍵詞CPECGHEA官能團力學(xué)性能應(yīng)力應(yīng)變曲線原味接枝共聚物縮寫HEA二羥基乙烷丙烯酯CPE氯化聚乙烯ISCGC原位氯化接枝共聚發(fā)CPECGHEA原位聚乙烯氯化接枝二羥基乙烷丙烯酯DSC差示掃描量熱法DMA動態(tài)力學(xué)分析法SEM掃描電子顯微鏡HDPE高密度聚乙烯GD接枝度GPC凝膠滲透色譜法WAXD廣角X射線衍射TG玻璃花轉(zhuǎn)變溫度E’儲存模量TANΔ正切損耗角介紹為了擴展氯化聚乙烯(CPE)的應(yīng)用或者獲得有特殊用途的聚合物,CPE需要通過物理或化學(xué)的方法被改性。在近些年有許多關(guān)于CPE的改性方法的報告。這些改性的例子包括添加氯化的基質(zhì),高阻位的苯酚化合物和有機的化合物等等去獲得好的阻尼和高硬度1–6。通過多組分機械混合技術(shù),一種與接枝共聚物兼容的遇水膨脹彈性體已經(jīng)準(zhǔn)備用CPE和聚(丙烯酸丙烯酰胺)作為主要材料,兩親性的接枝共聚物作為增溶劑7。炭黑(CB)作為填充補強劑也被放入CPE內(nèi),為了獲得好的性能。對于CPE和CB的二組分系統(tǒng),氧化的CB在低應(yīng)變振幅提供了高模量8。因為聚氨酯和CPE都含有極性的多功能的官能團,在加熱時可以相互作用形FIG2氯化聚乙烯(CPE)CL(WT)36應(yīng)力應(yīng)變曲線和聚乙烯原位氯化接枝二羥基乙烷丙烯酯CPECGHEACLWT361實驗材料材料在這個研究中的原始材料是高密度聚乙烯(HDPE),HDPELG6040由LGCHEMKOREA提供二羥基乙烷丙烯酯HEA是一個商業(yè)的等級由中國星路化工廠有限公司提供。氯氣由中國海晶化工廠提供。二氧化硅是一個商業(yè)等級由中國青島硅酸鈉有限公司提供。氯化聚乙烯和接枝共聚物CPECGHEA由實驗室中的學(xué)者提供。CPECGHEA的接枝度由1HNMR光譜學(xué)決定。CPECGHEA接枝共聚的確定細(xì)節(jié)將被發(fā)布在別處。CPECGHEACPECGHEA的合成的合成ISCGC在一個帶有攪拌葉片,溫度計,氣體輸送管的500ML圓底三頸燒瓶中進行。50GHOPE和一定量的HEA單體被加入到燒瓶中,攪拌約30MIN使HDPE和HEA充分混合。然后適量的二氧化硅被加入以避免PE的團聚。反映混合物在約40℃通過氮氣(N2)抽真空15MIN以排除氧氣(O2)。氯氣被引入到反應(yīng)中,反應(yīng)被引發(fā),當(dāng)反應(yīng)進行時溫度升高,在氯含量達到17前保持在80±2°C,然后在反應(yīng)過程中升到一定溫度(140℃以下)。反應(yīng)過程是被反應(yīng)系統(tǒng)釋放的氯化氫(HCL)引發(fā)的。當(dāng)期望的氯含量達到時氯氣被停止,反應(yīng)被終止。這個系統(tǒng)被冷卻到100℃以下。反應(yīng)中的氯氣通過真空抽出然后空氣進入到反應(yīng)中,真空和氧氣涌入的操作被交替的進行以確保殘余的氯氣被完全的清除。CPECGHEA制備的合成計劃展示在FIG1差示掃描量熱法(差示掃描量熱法(DSCDSC)DSC測量是在一個珀金埃爾莫DSC7量熱計中進行。樣品在10°C/MIN的加熱速率下從70℃加熱到150℃去研究聚合物的玻璃化轉(zhuǎn)變溫度。這個測試需在氮氣流動下實施并且912MG的樣品可以使用。動態(tài)里學(xué)分析(動態(tài)里學(xué)分析(DMADMA)不同樣品的動態(tài)力學(xué)性質(zhì)是由動態(tài)力學(xué)分析儀NETZSCHDMA242確定的,使用一個156HZ固定頻率,加熱速率3°C/MIN,在100°C到120°C范圍內(nèi)的動態(tài)拉伸模式。掃描電子顯微鏡(掃描電子顯微鏡(SEMSEM)SEMJEOLJSM6700F被用來研究拉伸測試獲得的表面斷裂的形態(tài)。表面斷裂通過JFC1600細(xì)涂層器涂上金,然后通過SEM檢驗。
下載積分: 10 賞幣
上傳時間:2024-03-16
頁數(shù): 10
大小: 0.84(MB)
子文件數(shù):
-
簡介:中文中文4800字出處出處BURMISTROVMA,KOTENKOVYKFIELDINVESTIGATIONSOFTHESTATICBEHAVIOROFANAVIGATIONLOCKCHAMBERJHYDROTECHNICALCONSTRUCTION,1967,13248254實驗研究通航時船閘的力學(xué)性質(zhì)實驗研究通航時船閘的力學(xué)性質(zhì)MA布爾米斯特羅夫和俞和T科特恩科夫UDC62786812087282247415雙線、單升船機VOTKIN船閘是卡馬河水電站復(fù)雜的結(jié)構(gòu)之一。它位于左岸土壩的區(qū)域,并延伸到上游,其地基是密實的粉質(zhì)粘土。采用鋼筋混凝土的輕質(zhì)塢式閘室,閘室采用連續(xù)底板,其有效長度為290米,有效寬度為30米,閘室底板由沉降縫沿長度方向分割成八部分。整體式鋼筋混凝土閘墻高28米,與預(yù)制涵洞式樓板剛性連接(見圖1)。兩年來該船閘是按照臨時方案運作凹槽回填砂至海拔190米高,頭部回填至海拔16米的高度。到1964年,主要施工作業(yè)已經(jīng)完成,在閘室內(nèi)壁上部設(shè)計規(guī)模達到了23米,回填不是為了降低作用在閘室內(nèi)壁的荷載。鋼筋混凝土箱底標(biāo)高為190米。在墻壁和箱子之間的空隙回填用砂石混合物,并且在室壁上的頂部錨入回填。為了進行實地調(diào)查,在1961年和1963年間我們安裝了333個的預(yù)真空室遠(yuǎn)程控制儀器,目前還有307個正在工作。儀器的布局見圖1該項研究需要對下列問題進行調(diào)查A)土壓力及室壁變形B)考察溫度要素;C)閘室底板、涵洞式樓板和室壁的應(yīng)力狀態(tài);C)閘墻內(nèi)壁連接縫的狀況。為了調(diào)查,我們使用遠(yuǎn)程控制字符串類型的傳感器(加固土壤測力計)和電阻傳感器(間隙測量儀,半導(dǎo)體溫度計和土體位移測量裝置)。在過閘季節(jié)和過閘時,閘室頂部的偏差大小需要通過測量來確。閘室回填和變形時的土壓力。根據(jù)土壤測力計的讀數(shù),繪出了土壓力特征圖,如圖2。當(dāng)回填包括地面時,從1962年構(gòu)建的儀器讀數(shù)審查圖中顯示了土壓力沿閘墻高度的分布的特征。在閘墻背部傾斜的部分,土壓力圖近似三角形分布,最大土壓力在距離填料表面約14米的深度處。在最大土壓力以下的1419米閘墻處,墻身是垂直的,土壓力呈不均勻下降。在過閘期間閘室內(nèi)壁上的總土壓力以平均30%的速度升高或下降。閘墻頂部的土壓力是變化的。因此,閘室灌水后,閘室內(nèi)壁上部的土壓力顯著上升,在中間部分保持不變,而在下部略有下降。而閘室泄水后,壓力變化發(fā)生的順序與上述相反。在1962年的土壓力值,用極限平衡方法,通過5070和3540的剩余數(shù)據(jù)的比較,可知土壓力在增加。在回填表層上放安卸料箱后,墻頂高度增加到23M,在閘墻壓上部分土壓力在增加,閘室灌水后更加明顯。我們從圖中看到,閘墻上的正常土壓力的合力在改變,從土壤測力計的讀數(shù)來看,隨著時間的推移,在夏天合力變至最大,隨后慢慢在冬天降低至最小值。在過閘時,季節(jié)變化和土壓力波動表明,回填土壓力的大小和位移的方向之間有明確關(guān)系。在第一種情況中,位移的方向是受溫度變化的影響,在夏天回填時壓力增加,在冬天回填時則減少。GIDROTEKHNICHESKOESTROITELSTVO,第3期,第3338,1967年3月譯。MA布爾米斯特羅夫和俞和T科特恩科夫高水位地低面水水位位高水位地面水位低水位(圖2)圖2考慮正常水壓力下的閘室內(nèi)壁土壓力圖。A第四部分左側(cè)閘墻的正常土壓力值;B第四部分右側(cè)閘墻的正常土壓力值;I左側(cè)閘墻在灌水時沿閘室底到吃水標(biāo)高水壓力的變化;II右側(cè)閘墻在灌水時沿閘室底到吃水高標(biāo)高水壓力的變化;1池底海拔較低時,閘室內(nèi)土壓力;2池頂標(biāo)高相同時,閘室內(nèi)土壓力;3)設(shè)計土壓力極限平衡狀態(tài)(按庫倫定理);4)在相同的靜止?fàn)顟B(tài)下設(shè)計土壓力極限平衡狀態(tài)。
下載積分: 10 賞幣
上傳時間:2024-03-12
頁數(shù): 9
大?。?0.63(MB)
子文件數(shù):
-
簡介:中文中文4480字畢業(yè)設(shè)計外文資料翻譯畢業(yè)設(shè)計外文資料翻譯題目環(huán)氧樹脂的力學(xué)性能學(xué)院材料科學(xué)與工程專業(yè)復(fù)合材料與工程班級學(xué)生學(xué)號20060103027指導(dǎo)教師指導(dǎo)教師二〇一〇年三月二十日2脂塑性變形的后固化溫度對塑性變形的影響,并且解釋了各個理論的各個條款,發(fā)展到能解釋玻璃狀聚合物的塑性變形。在第二部分我們展示了在這些材料中的裂紋擴展是受樹脂的塑性變形行為控制。2實驗過程21成型和制樣目前此研究用的樹脂是一個商用雙酚A二縮水甘油醚(DGEBA),與EPIKOTE828(殼牌)的三乙烯四胺(TETA),經(jīng)過初級混合得到二級胺。成型條件的詳細(xì)內(nèi)容被記載到以前的出版物上1113。固化劑使用的四種不同的數(shù)量是74,98,123和147每份。對于所有的初始硬化成型反應(yīng)可以在不同時期高溫固化前在室溫下反應(yīng)24小時。鑄造樹脂在形式上有兩種不同的厚度39和63RAM。22楊氏模量的測定把39MM的模壓樹脂片切成30MM70RAM的矩形片。樹脂的系數(shù)由三點彎曲確定,用一款英斯特機械測試機作用在不同的跨桿頭速度下得到。圖解說明如圖1A。載荷P和試樣中心位移Y的關(guān)系體現(xiàn)在圖1B。而且P與Y的比值通過方程與樹脂的楊氏模量有關(guān)14,式中的B和H分別是試樣矩形截面的寬度和厚度。兩個支撐點之間的距離是L樹脂的模量是E。位移Y取決于跨頭的運動,同時要考慮到機器的柔韌性。圖1楊氏模量的確定A三點彎曲測試B載荷位移曲線。23屈服應(yīng)力的測量用63毫米的樹脂板加工的長10毫米直徑5毫米的圓柱樣本,他們在環(huán)境室的英斯特朗測試機的拋光潤滑板之間發(fā)生單軸壓縮變形如圖2A。公稱應(yīng)變E取決于
下載積分: 10 賞幣
上傳時間:2024-03-17
頁數(shù): 13
大?。?0.28(MB)
子文件數(shù):
-
簡介:SHIFTDYNAMICSANDCONTROLOFDUALCLUTCHTRANSMISSIONSMANISHKULKARNI,TAEHYUNSHIM,YIZHANGDEPARTMENTOFMECHANICALENGINEERING,UNIVERSITYOFMICHIGANDEARBORN,DEARBORNMI48128,UNITEDSTATESRECEIVED4OCTOBER2005ACCEPTED1MARCH2006AVAILABLEONLINE18MAY2006ABSTRACTSHIFTSINADUALCLUTCHTRANSMISSIONDCTAREREALIZEDBYTORQUETRANSFERFROMONECLUTCHTOANOTHERWITHOUTTRACTIONINTERRUPTIONDUETOTHECONTROLLEDSLIPPAGEOFTHECLUTCHESTHETIMINGOFENGAGEMENTANDDISENGAGEMENTOFTHETWOCLUTCHESISCRITICALFORACHIEVINGASMOOTHSHIFTWITHOUTENGINEFLAREANDCLUTCHTIEUPTHISPAPERPRESENTSANANALYTICALMODELFORTHESIMULATION,ANALYSISANDCONTROLOFSHIFTDYNAMICSFORDCTVEHICLESADYNAMICMODELANDTHECONTROLLOGICFORTHEINTEGRATEDVEHICLEHAVEBEENDEVELOPEDUSINGMATLAB/SIMULINKASTHESIMULATIONPLATFORMTHEMODELHASBEENUSEDTOSTUDYTHEVARIATIONINOUTPUTTORQUEINRESPONSETODIFFERENTCLUTCHPRESSUREPROFILESDURINGSHIFTSOPTIMIZEDCLUTCHPRESSUREPROFILESHAVEBEENCREATEDFORTHEBESTPOSSIBLESHIFTQUALITYBASEDONMODELSIMULATIONASANUMERICALEXAMPLE,THEMODELISUSEDFORADCTVEHICLETOSIMULATETHEWIDEOPENTHROTTLEPERFORMANCEVEHICLELAUNCHANDSHIFTPROCESSAREBOTHSIMULATEDTOASSESSTRANSMISSIONSHIFTQUALITYANDVALIDATETHEEFFECTIVENESSOFTHESHIFTCONTROL?2006ELSEVIERLTDALLRIGHTSRESERVEDKEYWORDSDUALCLUTCHTRANSMISSIONAUTOMATICTRANSMISSIONS1INTRODUCTIONTHEREHASBEENACLEARTRENDINTHEAUTOMOTIVEINDUSTRYINRECENTYEARSTOWARDSINCREASEDRIDECOMFORTANDFUELEFFICIENCYASTHEPOWERTRANSMISSIONUNIT,TRANSMISSIONSPLAYANIMPORTANTROLEINVEHICLEPERFORMANCEANDFUELECONOMYTHEREARECURRENTLYSEVERALTYPESOFTRANSMISSIONSANDTHEASSOCIATEDTECHNOLOGIESTHATOFFERDIFFERENTPERFORMANCEPRIORITIESWHENFITINTOAVEHICLE1MANUALTRANSMISSIONSHAVEANOVERALLEFFICIENCYOF962,WHICHISTHEHIGHESTEFFICIENCYVALUEFORANYTYPEOFTRANSMISSIONCURRENTPRODUCTIONAUTOMATICSHAVEBEENIMPROVEDTOPROVIDEANEFFICIENCYOFNOTMORETHAN863BELTTYPECVT’SHAVEANOVERALLEFFICIENCYOF846,HOWEVER,THEMAJORADVANTAGEOFCVTISTHATITALLOWSTHEENGINETOOPERATEINTHEMOSTFUELEFFICIENTMANNER2AUTOMATEDMANUALTRANSMISSIONSHAVETHESAMEEFFICIENCYOFMANUALTRANSMISSIONSANDOFFEROPERATIONCONVENIENCESIMILARTOCONVENTIONALAUTOMATICTRANSMISSIONSTHEREEXISTTWOTECHNICALLYFEASIBLEDESIGNSFORAUTOMATEDLAYSHAFTGEARINGTRANSMISSIONSONEUSESASINGLECLUTCHANDISBASICALLYAMANUALTRANSMISSIONWITHANADDEDONCONTROLUNITTHATAUTOMATESTHECLUTCHANDSHIFTOPERATIONSINTHISDESIGN,THEREISANINTERRUPTIONOF0094114X/SEEFRONTMATTER?2006ELSEVIERLTDALLRIGHTSRESERVEDDOI101016/JMECHMACHTHEORY200603002CORRESPONDINGAUTHORTEL13135935539EMAILADDRESSANDINGUMICHEDUYZHANGMECHANISMANDMACHINETHEORY422007168–182WWWELSEVIERCOM/LOCATE/MECHMTMECHANISMANDMACHINETHEORYTHEENGINEOUTPUTTORQUEISINTERPOLATEDINTERMSOFTHETHROTTLEANGLEANDRPMFROMTHEENGINEMAPGEARSHAVENOBACKLASHALLTHEMECHANICALLOSSESAREMODELEDASAPARTOFTHEVEHICLEDRAGDELAYSDUETOHYDRAULICACTUATIONSYSTEMARENOTCONSIDEREDCLUTCHESAREMODELEDASCOULOMBFRICTIONELEMENTSTEMPERATUREEFFECTSOFTHEDRIVETRAINARENEGLECTEDCL2CL1SYN5RSYN6SYN13SYN244231INPUTSHAFTOUTPUT6R5FINALDRIVEPINION2FINALDRIVEPINION1INTERMEDIATESHAFT1INTERMEDIATESHAFT2SYN5RSYN6SYN13SYN24INPUTSHAFTOUTPUT6R5SYN5RSYN6SYN13SYN24INPUTSHAFTOUTPUT6R5FINALDRIVEPINION2FINALDRIVEPINION1INTERMEDIATESHAFT1INTERMEDIATESHAFT2FIG1DCTSTICKDIAGRAM4OUTPUTSHAFT4RCL1CL2131265INPUTSHAFTII/PIECL1312ENGINEKMCMIMEΩPI/ΩK1C1IHISI1SΩI2IMΩIMΩHΩK2C2I3AIOΩWΩFIG2DCTDYNAMICMODEL170MKULKARNIETAL/MECHANISMANDMACHINETHEORY422007168–182
下載積分: 10 賞幣
上傳時間:2024-03-14
頁數(shù): 15
大?。?1.19(MB)
子文件數(shù):
-
簡介:30/JOURNALOFBRIDGEENGINEERING/FEBRUARY1999ULTIMATEBEHAVIOROFLONGSPANCABLESTAYEDBRIDGESBYWEIXINREN1ABSTRACTTHESTUDYDESCRIBEDHEREINVESTIGATESTHENONLINEARSTATICANDULTIMATEBEHAVIOROFALONGSPANCABLESTAYEDBRIDGEUPTOFAILUREANDEVALUATESTHEOVERALLSAFETYOFTHEBRIDGEBOTHGEOMETRICANDMATERIALNONLINEARITIESAREINVOLVEDINTHEANALYSISTHEGEOMETRICNONLINEARITIESCOMEFROMTHECABLESAGEFFECT,AXIALFORCEBENDINGINTERACTIONEFFECT,ANDLARGEDISPLACEMENTEFFECTMATERIALNONLINEARITIESARISEWHENONEORMOREBRIDGEELEMENTSEXCEEDTHEIRINDIVIDUALELASTICLIMITSTHEEXAMPLEBRIDGEISALONGSPANCABLESTAYEDBRIDGEOFA605MCENTRALSPANLENGTHWITHSTEELBOXGIRDERANDREINFORCEDCONCRETETOWERSUNDERCONSTRUCTIONINCHINABASEDONTHELIMITPOINTINSTABILITYCONCEPT,THEULTIMATELOADCARRYINGCAPACITYANALYSISISDONESTARTINGFROMTHEDEFORMEDEQUILIBRIUMCONFIGURATIONDUETOBRIDGEDEADLOADSTHEEFFECTSOFTHESTEELGIRDERHARDENINGANDTHEGIRDERSUPPORTCONDITIONSONTHEULTIMATELOADCARRYINGCAPACITYOFTHEBRIDGEHAVEBEENSTUDIEDTHERESULTSSHOWTHATTHEGEOMETRICNONLINEARITYHASAMUCHSMALLEREFFECTONTHEBRIDGEBEHAVIORTHANMATERIALNONLINEARITYTHEOVERALLSAFETYOFALONGSPANCABLESTAYEDBRIDGEDEPENDSPRIMARILYONTHEMATERIALNONLINEARBEHAVIOROFINDIVIDUALBRIDGEELEMENTSTHECRITICALLOADANALYSISBASEDONTHEBIFURCATIONPOINTINSTABILITYCONCEPTGREATLYOVERESTIMATEDTHESAFETYFACTOROFTHEBRIDGETHEULTIMATELOADCARRYINGCAPACITYANALYSISANDOVERALLSAFETYEVALUATIONOFALONGSPANCABLESTAYEDBRIDGESHOULDBEBASEDONTHELIMITPOINTINSTABILITYCONCEPTANDMUSTTRACETHELOADDEFORMATIONPATHOFTHEBRIDGEFROMAPPLIEDLOADSTOFAILUREINTRODUCTIONMODERNCABLESTAYEDBRIDGESHAVEBEENEXPERIENCINGAREVIVALSINCETHEMID1950S,ALTHOUGHTHECONCEPTOFSUPPORTINGABRIDGEGIRDERBYINCLINEDTENSIONSTAYSCANBETRACEDBACKTOTHESEVENTHCENTURYPODOLNYANDFLEMING1972THEINCREASINGPOPULARITYOFCONTEMPORARYCABLESTAYEDBRIDGESAMONGBRIDGEENGINEERSCANBEATTRIBUTEDTO1THEAPPEALINGAESTHETICS2THEFULLANDEFFICIENTUTILIZATIONOFSTRUCTURALMATERIALS3THEINCREASEDSTIFFNESSOVERSUSPENSIONBRIDGES4THEEFFICIENTANDFASTMODEOFCONSTRUCTIONAND5THERELATIVELYSMALLSIZEOFTHEBRIDGEELEMENTSOVERTHEPAST40YEARS,RAPIDDEVELOPMENTSHAVEBEENMADEONLONGSPANCABLESTAYEDBRIDGESCABLESTAYEDBRIDGESARENOWENTERINGANEWERA,REACHINGCENTRALSPANLENGTHSOFFROM400TO1,000MANDEVENLONGERWITHTHEINCREASINGCENTRALSPANLENGTHOFMODERNCABLESTAYEDBRIDGES,THETRENDOFTHEBRIDGEISTOUSEMORESHALLOWANDSLENDERSTIFFENINGGIRDERSTOMEETTHEREQUIREMENTSOFAERODYNAMICSINTHISCASE,BRIDGESAFETYSTRENGTH,STIFFNESS,ANDSTABILITYUNDERSERVICELOADINGSANDENVIRONMENTALDYNAMICLOADINGSSUCHASIMPACTS,WINDS,ANDEARTHQUAKESPRESENTSINCREASINGLYIMPORTANTCONCERNSINBOTHDESIGNANDCONSTRUCTIONALONGSPANCABLESTAYEDBRIDGEEXHIBITSNONLINEARCHARACTERISTICSUNDERLOADINGSITISWELLKNOWNTHATTHESELONGSPANCABLESUPPORTEDSTRUCTURESARECOMPOSEDOFCOMPLEXSTRUCTURALCOMPONENTSWITHHIGHGEOMETRICNONLINEARITIESTHENONLINEARAXIALFORCEELONGATIONBEHAVIORFORTHEINCLINEDCABLESTAYSUNDERDIFFERENTTENSIONLOADLEVELSDUETOTHESAGINITIATEDBYTHEIROWNWEIGHTSAGEFFECTTHECOMBINEDAXIALLOADANDBENDINGMOMENTINTERACTIONFORTHEGIRDERANDTOWERSLARGEDISPLACEMENT,WHICHISPRODUCEDBYTHEGEOMETRYCHANGESOFTHESTRUCTUREINADDITION,NONLINEARSTRESSSTRAINBEHAVIOROFEACHBRIDGE1PROFANDHEAD,DIVOFBRIDGEANDSTRUCTENGRG,DEPTOFCIVENGRG,CHANGSHARAILWAYUNIV,CHANGSHA,410075,PEOPLE’SREPUBLICOFCHINANOTEDISCUSSIONOPENUNTILJULY1,1999TOEXTENDTHECLOSINGDATEONEMONTH,AWRITTENREQUESTMUSTBEFILEDWITHTHEASCEMANAGEROFJOURNALSTHEMANUSCRIPTFORTHISPAPERWASSUBMITTEDFORREVIEWANDPOSSIBLEPUBLICATIONONJUNE19,1997THISPAPERISPARTOFTHEJOURNALOFBRIDGEENGINEERING,VOL4,NO1,FEBRUARY,1999?ASCE,ISSN10840702/99/00010030–0037/800?50PERPAGEPAPERNO16039ELEMENTINCLUDINGYIELDINGSHOULDBEINCLUDEDINTHEULTIMATELOADCARRYINGCAPACITYANALYSISANDOVERALLSAFETYEVALUATIONMANYINVESTIGATORSHAVEPRESENTEDDIFFERENTANALYSISMETHODSTODEALWITHTHISHIGHLYNONLINEARSTRUCTUREEG,BARONANDVENKATESAN1971TANG1976COMO1985SOMERESEARCHERSDISREGARDEDALLSOURCESOFNONLINEARITIESEG,KRISHNAETAL1985WHEREASOTHERSINCLUDEDONEORMOREOFTHESESOURCESMOSTNONLINEARANALYSESOFCABLESTAYEDBRIDGESHAVEFOCUSEDONPLANEFLEMING1979ORSPACENAZMYANDABDELGHAFFAR1990AKANOKNUKULCHAIANDGUAN1993BOONYAPINYOETAL1994GEOMETRICNONLINEARBEHAVIORBUTSOMEANALYSISNAKAIETAL1985SEIFANDDILGER1990INVOLVEDBOTHGEOMETRICANDMATERIALNONLINEARITIESANDREVEALEDTHATTHEMATERIALNONLINEARITYWASDOMINANTINTHENONLINEARSTATICBEHAVIOROFLONGSPANCABLESTAYEDBRIDGESITISPARTICULARLYTRUEFORLONGSPANSEGMENTALCONCRETECABLESTAYEDBRIDGESINDEED,THEULTIMATELOADCARRYINGCAPACITYOFCABLESTAYEDBRIDGESISGENERALLYDEPENDENTONTHESTABILITYCONDITIONSINVOLVEDINBOTHELASTICPLASTICITYANDLARGEDEFORMATIONSWITHTHEEVERINCREASINGAPPLICATIONOFTHELIMITSTATEDESIGNMETHODINTHESTRUCTURALDESIGNINSTEADOFTHEALLOWABLESTRESSMETHOD,UNDERSTANDINGANDSTUDYINGONTHEOVERALLULTIMATEBEHAVIOROFLONGSPANCABLESTAYEDBRIDGESBECOMESESSENTIALBASEDONTHELIMITPOINTINSTABILITYCONCEPT,THEPRESENTSTUDYINVESTIGATESTHENONLINEARSTATICANDULTIMATEBEHAVIOROFALONGSPANCABLESTAYEDBRIDGEUNDERTHECOMPLETEDBRIDGESTATEBOTHGEOMETRICANDMATERIALNONLINEARITIESAREINCLUDEDINTHEANALYSISPARAMETERSSUCHASTHESTEELGIRDERMATERIALHARDENINGANDTHEGIRDERSUPPORTCONDITIONSARESTUDIEDINTHISPAPERALLANALYSESSTARTFROMTHEDEFORMEDEQUILIBRIUMCONFIGURATIONDUETOBRIDGEDEADLOADSTHEMAINOBJECTIVEISTOACHIEVEASYNTHETICUNDERSTANDINGOFTHESTATICULTIMATEBEHAVIORANDTOEVALUATETHEOVERALLSAFETYOFALONGSPANCABLESTAYEDBRIDGENONLINEARCONSIDERATIONSANDSAFETYEVALUATIONNONLINEARCONSIDERATIONSINANALYSISACABLESTAYEDBRIDGEISANONLINEARSTRUCTURALSYSTEMINWHICHTHEGIRDERISSUPPORTEDELASTICALLYATPOINTSALONGITSLENGTHBYINCLINEDCABLESTAYSALTHOUGHTHEBEHAVIOROFTHEMATERIALISLINEARLYELASTIC,THEOVERALLLOADDISPLACEMENTRESPONSEMAYBENONLINEARUNDERNORMALDESIGNLOADSEG,FLEMING1979NAZMYANDABDELGHAFFAR1990AGEOMETRICNONLINEARITIESARISEFROMTHEGEOMETRYCHANGESTHATTAKEPLACE32/JOURNALOFBRIDGEENGINEERING/FEBRUARY1999FIG1ELEVATIONOFEXAMPLEBRIDGEPCRITICALV3PEXISTINGTHELOWESTSAFETYFACTOROFHISEXAMPLECABLESTAYEDBRIDGESWAS997BOONYAPINYOETAL1994STUDIEDTHEGEOMETRICNONLINEARINSTABILITYOFLONGSPANCABLESTAYEDBRIDGESALSOBASEDONTHEBIFURCATIONPOINTINSTABILITYCONCEPTINTHEIRANALYSIS,ALLGEOMETRICNONLINEARSOURCESASMENTIONEDABOVEWERECONSIDERED,BUTTHEMATERIALNONLINEARITYWASNOTINCLUDEDTHEIREXAMPLEBRIDGEWASALONGSPANCABLESTAYEDBRIDGEWITHTHECENTERSPANLENGTHOF1,000MTHEBUCKLINGFACTORSOFTHEBRIDGEWEREGIVENTHEREFORE,ACABLESTAYEDBRIDGEISNOLONGERAPERFECTSTRUCTURALSYSTEMBECAUSEITSELEMENTSSUCHASTHEGIRDERANDTOWERSARETHEMEMBERSSUBJECTEDTOBOTHAXIALFORCESANDBENDINGMOMENTSBEFORETHELIVELOADSAREAPPLIED,THEBRIDGEHASSUSTAINEDHEAVYDEADLOADSANDBUILTINCONSTRUCTIONLOADSSOTHATINITIALDEFORMATIONSANDSTRESSESEXISTINEVERYMEMBEROBVIOUSLY,THECONCEPTOFBIFURCATIONPOINTINSTABILITYBASEDONTHEEIGENVALUEANALYSISWILLBEINVALIDFORCABLESTAYEDBRIDGESTHECRITICALLOADANALYSISOFCABLESTAYEDBRIDGESSHOULDBETHELIMITPOINTINSTABILITYPROBLEMANOTHERIMPORTANTFEATUREISTHEMATERIALNONLINEARITYACTUALLY,BEFORETHEAPPLIEDLOADISFARLESSTHANTHECRITICALLOADBASEDONTHEBIFURCATIONPOINTINSTABILITYCONCEPT,THESTRESSESINSOMEMEMBERSMIGHTHAVEEXCEEDEDTHEMATERIALYIELDINGLIMITANDTHEBRIDGEHASALREADYFAILEDNAKAIETAL1985STUDIEDTHEULTIMATELOADOFACABLESTAYEDBRIDGEWITHA355MCENTRALSPANLENGTHBASEDONELASTICPLASTICANDFINITEDISPLACEMENTANALYSISTHEYSHOWEDTHATTHERATIOOFULTIMATELOADTODESIGNLOADWASABOUT30SEIFANDDILGER1990STUDIEDTHEULTIMATELOADSOFAPRESTRESSEDCONCRETEP/CCABLESTAYEDBRIDGETHEIRRESULTSFORANEXAMPLEBRIDGESHOWEDTHATTHEMAXIMUMRATIOOFLIVELOADTODEADLOADWASABOUT28ALLOFTHESEVALUESAREMUCHLOWERTHANTHOSEUSINGTANG’SFORMULASBASEDONTHEBIFURCATIONPOINTINSTABILITYANALYSISHENCE,THEBIFURCATIONPOINTINSTABILITYCRITICALLOADOFCABLESTAYEDBRIDGESGREATLYOVERESTIMATESTHELOADCARRYINGCAPACITYOFTHEBRIDGE,WHICHISNOTCONSERVATIVEFORTHESAFETYEVALUATIONOFCABLESTAYEDBRIDGESTHEULTIMATELOADCARRYINGCAPACITYOFLONGSPANCABLESTAYEDBRIDGESBASEDONTHELIMITPOINTINSTABILITYCONCEPTSHOULDBESTUDIEDSUFFICIENTLYTOEVALUATETHEOVERALLSAFETYUNDERBOTHDESIGNANDCONSTRUCTIONHOWEVER,THEULTIMATELOADCARRYINGCAPACITYOFACABLESTAYEDBRIDGEATTHELIMITPOINTISNOTEASILYOBTAINEDTHEULTIMATELOADCARRYINGCAPACITYANALYSISSHOULDINVOLVEBOTHGEOMETRICANDMATERIALNONLINEARITYTHEREISNOCLOSEDFORMSOLUTIONANDANUMERICALMETHODBECOMESNECESSARYTHEULTIMATELOADCARRYINGCAPACITYOFACABLESTAYEDBRIDGECANONLYBEOBTAINEDTHROUGHOUTTHELOADDISPLACEMENTCURVESFROMAPPLIEDLOADSTOFAILUREPRESENTLY,THEULTIMATELOADCARRYINGCAPACITYOFSTRUCTURESHASBECOMEINCREASINGLYATTRACTIVEBECAUSEOFTHEAPPLICATIONOFTHELIMITSTATEDESIGNMETHODITISWELLKNOWNTHATTHESTRUCTURESHOULDBEDESIGNEDFORSUFFICIENTULTIMATELOADCARRYINGCAPACITYTHEREFORE,DETERMININGTHEULTIMATELOADCARRYINGCAPACITYOFTHESTRUCTUREISOFUTMOSTIMPORTANCEIFTHEULTIMATELOADCARRYINGCAPACITYOFALONGSPANCABLESTAYEDBRIDGEHASBEENDETERMINED,THEOVERALLSAFETYFACTORNOFTHEBRIDGECANBEWRITTENBYQUN4Q0WHEREQ0ISTHEDESIGNLOADOFTHEBRIDGEANDQUISTHEULTIMATELOADBOTHINCLUDEDEADLOADSANDLIVELOADSDESCRIPTIONOFEXAMPLELONGSPANCABLESTAYEDBRIDGETHEEXAMPLEBRIDGESTUDIEDHEREISTHEMINGRIVERLONGSPANCABLESTAYEDBRIDGE,WITHA605MCENTRALSPANLENGTH,WHICHISNOWONEOFTHELONGESTCENTRALSPANCABLESTAYEDBRIDGESUNDERCONSTRUCTIONINCHINATHEBRIDGESPANARRANGEMENTSARE90?200?605?200?90MTHEREAREFOURTRAFFICLANESTHEELEVATIONVIEWOFTHEBRIDGEISSHOWNINFIG1THEDECKCROSSSECTIONISANAERODYNAMICALLYSHAPEDCLOSEDBOXSTEELGIRDER251MWIDEAND28MHIGHASDEPICTEDINFIG2THEBRIDGETOWERSAREASHAPEDSTEELREINFORCEDCONCRETETOWERS1755MHIGHASSHOWNINFIG3THEEIGHTGROUPSOFCABLESARECOMPOSEDOFHIGHSTRENGTHSTEELWIRES7MMINDIAMETERWITHFROM73TO199WIRESPERCABLETHECABLEDATAARELISTEDINTABLE1THESTAYCABLESAREDOUBLEARRANGEMENTSTHETHREEMAINBRIDGEELEMENTSOFTHEEXAMPLEBRIDGE,NAMELY,STEELGIRDER,CABLES,ANDREINFORCEDCONCRETETOWERSARECOMPOSEDOFTHREEDIFFERENTMATERIALSTHEWEIGHTPERUNITVOLUMEOFEACHCABLEDEPENDSONTHENUMBEROFWIRESININDIVIDUALCABLESASSHOWNINTABLE1THEMATERIALDATAFORTHEANALYSESARELISTEDINTABLE2TABLE3GIVESTHEELASTICPLASTICHARDENINGSTRESSSTRAINDATAOFTHESTEELGIRDERUSEDINTHEANALYSISFORFEMMODELING,THEGIRDERISDIVIDEDINTO76PLANEBEAMELEMENTSANDEACHTOWERISDIVIDEDINTO32PLANEBEAMELEMENTSEACHCABLEISTREATEDASAPLANETRUSSELEMENTBECAUSEOFTHECOMPLEXCROSSSECTIONSHAPEOFTHEBRIDGE,FORSIMPLICITY,THEEQUIVALENTTHINWALLEDBOXSECTIONOFTHEGIRDERANDTOWERSAREUSEDREN1997THEEQUIVALENTSECTIONSAREOBTAINEDBYEQUALIZINGTHECROSSSECTIONAREASANDSECTIONINERTIAMOMENTSOFTHEGIRDERANDTOWERSTHESECTIONAREASANDINERTIAMOMENTSOFTHEGIRDERANDTOWERSAREGIVENINFIG
下載積分: 10 賞幣
上傳時間:2024-03-14
頁數(shù): 8
大小: 0.15(MB)
子文件數(shù):
-
簡介:TSINGHUASCIENCEANDTECHNOLOGYISSN1007021422/23PP265269VOLUME10,NUMBER2,APRIL2005AREALOGISTICSSYSTEMBASEDONSYSTEMDYNAMICSMODELGUISHOUPINGMW,ZHUQIANG£,LULIFANGPAREALOGISTICSSYSTEMSIMULATIONINTRODUCTIONWITHCHINASENTRYINTOWTO,MODERNLOGISTICSSYSTEMSAREINDISPENSABLEFORFASTECONOMICGROWTHANDINCREASEDMARKETOPENINGRATIONALAREALOGISTICSSYSTEMSARENEEDEDTOREALIZEEFFICIENTLOGISTICSINCHINASO,THEORETICALRESEARCHTHATCANEFFECTIVELYCONSTRUCTAREALOGISTICRATIONALIZATIONBECOMESMOREIMPORTANTHOWEVER,THEREISLITTLEEFFECTIVERESEARCHONAREALOGISTICSPROBLEMSWITHFEWRESEARCHMETHODSAVAILABLELARGECOMPLICATEDSYSTEMS,SUCHASSOCIALANDECONOMICSYSTEMS,CANBEMOREEFFECTIVELYANALYZEDUSINGTHESYSTEMDYNAMICSMETHODTHESYSTEMDYNAMICSMODELSHOULDINCLUDENONLINEARDYNAMICMODELSWITHMULTIPLEFEEDBACKANDLONGTIMEDELAYSINTERMSOFCONSEQUENCEOFSOCIALSYSTEMSANDOBVIOUSSTRUCTUREOF“WHITEBOX“MOREOVER,THEMOTIONOFTHEDYNAMICSYSTEMSISSOLVEDINCOMPUTERSIMULATIONSTOANALYZETHEEFFECTOFDECISIONMAKINGONTHESYSTEMMOTIONTHEKEYPARTOFTHESYSTEMDYNAMICSMODELISNOTTHERECEIVED20030923REVISED20040412SUPPORTEDBYTHENATIONALNATURALSCIENCEFOUNDATIONOFCHINANO50078024TOWHOMCORRESPONDENCESHOULDBEADDRESSEDEMAILSPGUI21CNNETTEL8620871110303502DATABUTTHEMODELDESIGNTHEADVANTAGEOFSYSTEMDYNAMICSMODELSISTHATTHEYINCLUDEDECISIONTREESWITHCONSEQUENCEANDSTRUCTURE,WHICHISTHEREASONWHYOTHERMETHODSIE,ECONOMETRICS,OPERATIONALRESEARCHANDANALYSISOFINPUTANDOUTPUTARENOTASEFFECTIVEASTHESYSTEMDYNAMICSMODELINANALYZINGSOCIALANDECONOMICSYSTEMS1_5THISPAPERDESCRIBESANAREALOGISTICSMODELBYUSINGQUALITATIVEANDQUANTITATIVESYSTEMDYNAMICSANALYSESTHEINFORMATIONGATHEREDWASUSEDTOANALYZETHESTRUCTUREANDBEHAVIOROFSYSTEMSTOPROVIDEASCIENTIFICBASISFORDECISIONMAKING1SYSTEMDYNAMICSMODELFORAREALOGISTICSSYSTEMTHEFLOWCHARTFORTHESYSTEMDYNAMICSMODELOFTHEAREALOGISTICSSYSTEMISGIVENINFIG1THESYSTEMFLOWCHARTILLUSTRATESTHEKEYSTEPSINTHESYSTEMDYNAMICSMODEL1SPECIFYGOALSANDLIMITSINCLUDINGSYSTEMBOUNDARIES,THESYSTEMDYNAMICSMODELRESEARCHOBJECT,FORECASTINGOFTHEEXPECTEDSYSTEMSTATE,OBSERVINGSYSTEMFEATURES,IDENTIFYINGPROBLEMSANDSYSTEMSTATESRELATEDTOTHEPROBLEMS,LIMITINGTHERANGESOFPROBLEMS,ANDCHOOSINGAPPROPRIATESYSTEMVARIABLES6GUISHOUPINGF?FETALAREALOGISTICSSYSTEMBASEDONSYSTEMDYNAMICSMODEL2673MATHEMATICDESCRIPTIONFIG3SYSTEMDYNAMICSMODELFORANAREALOGISTICSSYSTEMLOGISTICSDIFFERENCEALCACTUALLOGISTICSCOSTLRLOGISTICSREQUIREMENTGRLDLOGISTICSDEMANDGROWTHRATEBRLDLOGISTICSDEMANDBAFFLERATEDCDEMANDCOEFFICIENTLCLOGISTICSCOSTIFLCLOGISTICSCOSTINFLUENCEFACTORCFCOSTFACTORLALOGISTICSABILITYGRLALOGISTICABILITYGROWTHRATEDLALOGISTICABILITYDISSIPATIVERATEIEINVESTMENTEFFECTLILOGISTICSINVESTMENTIFIINVESTMENTINFLUENCEFACTORDCLLOGISTICSDISSIPATIVECOEFFICIENTIEDINVESTMENTEFFECTDELAYCRIINVESTMENTCONVERSIONRATERIINVESTMENTRATIODDDIFFERENCEDELAYSGCSELFGROWTHCOEFFICIENTTHESYSTEMEQUATIONSAREDYNAMOEQUATIONSRUNONVENSIM_PLE32GDPINTEGNGREBRLNGREGDPXGCGPBRLNGREXBFCDD/ILCLDALCILCDDDELAY3LD,DELAYTIMEILCLDXTHECHARTOFICLDINTEGGRLDBRLDGRLDGDPXTHEFORMOFDCLA/LDBRLDGRLDXINFLUENTIALFACTORSCHARTOFLCLAINTEGGRLADRLAGRLALAXSGCTHEDELAYOFIEXCRIDLALAXDCLLIGDPXTHEFORMOFRIDD/ILCTHEDYNAMOEQUATIONSFORTHEOTHERVARIABLESCANBEEXPRESSEDINTHESAMEWAYTHESYSTEMINCLUDESSTATEVARIABLESXI,X2,XM,CONTROLVARIABLESU\,U2,UR,ANDTHEOUTPUTVARIABLESTHATARERELATEDBYASYSTEMOFMFIRSTORDERDIFFERENTIALEQUATIONS1910XJFIXJ,X2,,XMJWJJVJOI12,,IFITHEOUTPUTCHARACTERISTICSAREEXPRESSEDASY}GJX1,X2,?,XM,U1,U2,,URT,71,2,,HDEFINEXXUXXX2,UU2,Y_XM_UXREPRESENTSTHESTATEVECTOR,UREPRESENTSTHECONTROLVECTOR,ANDYREPRESENTSTHEOUTPUTVECTORTHEVECTORFUNCTIONFIX,U,TISTHESTATEEQUATION,XRM,RRGX,U,TISTHEOUTPUTEQUATION,YRHTHEAREALOGISTICSSYSTEMISAFEEDBACKSYSTEMWITHTHREELEVELVARIABLESTHEDYNAMICSEQUATIONSFORTHEVECTORSCANBEFORMULATEDAS00LAL,FO22_C341C3WHERELRM,AISTHETRANSFERMATRIX,C\2REPRESENTSTHEBAFFLEFACTOR,CUREPRESENTSTHEDIFFERENCEDELAY,CUREPRESENTSTHEIDEALLOGISTICSCOST,C2\REPRESENTSTHEDEMANDCOEFFICIENT,C22REPRESENTSTHELOGISTICSCOSTINFLUENTIALFACTOR,C31REPRESENTSTHENATURALGROWTHCOEFFICIENT,ANDC34REPRESENTSTHEDISSIPATIVECOEFFICIENTTHEMATHEMATICALMODELWITHINITIALVALUESOFTHESYSTEMSTATEVARIABLESWASSOLVEDUSINGTHESIMULATIONSOFTWAREVENSIMTOCALCULATETHEDYNAMICSYSTEMCHANGESWITHTIME4MODELSIMULATIONANDANALYSISTHECITYOFGUANGZHOUWASUSEDASTHESPECIALEXAMPLEFORTHELOGISTICMODELTHERESULTSWEREUSEDTO
下載積分: 10 賞幣
上傳時間:2024-03-13
頁數(shù): 5
大?。?0.92(MB)
子文件數(shù):
-
簡介:淮陰工學(xué)院畢業(yè)設(shè)計外文資料翻譯學(xué)院院建筑工程學(xué)院專業(yè)業(yè)土木工程(路橋方向)姓名名石洋學(xué)號號1081401526外文出外文出處處工程力學(xué)雜志用外文寫JOURNALOFENGINEERINGMECHANICS附件件1外文資料翻譯譯文;2外文原文。附件附件1外文外文資料翻料翻譯譯譯譯文TIMOSHENKO和剪切模型梁的動力學(xué)研究NO?LCHALLAMEL1摘要古典TIMOSHENKO梁模型和剪切梁模型常用于建筑行為模型都剪穩(wěn)定性或動態(tài)分析。該技術(shù)關(guān)注的是兩種模型間的大量彎曲剪切剛度值的問題。這是以兩種模型分析研究了簡支梁。獲得大量彎曲剪切剛度值的漸進解。在一般情況下,實驗在考慮大彎剪剛度值參數(shù)時證明該剪切梁模型不能從TIMOSHENKO模型中推斷出來,這只是達到特定的幾何參數(shù)在目前的例子。作為結(jié)論,剪切模型的能力近似TIMOSHENKO模型,因為大量彎曲剪切剛度參數(shù)是堅定的依賴于橫截面在邊界狀態(tài)下的材料和幾何特性。關(guān)鍵詞橫波,結(jié)構(gòu)力學(xué),動態(tài)模型,腦電圖儀,比較研究。引言經(jīng)典的TIMOSHENKO梁模型和剪切梁模型經(jīng)常被用來模擬建筑物的剪切穩(wěn)定性和動態(tài)特性。該技術(shù)關(guān)注的是兩種模型間的大量彎曲剪切剛度值的問題。2004年ARISTIZABALOCHOA通過考慮大量無維參數(shù)來比較這兩種模型出一種關(guān)系,屈服于剪切剛度參數(shù)。這項科學(xué)證據(jù)表明一個簡單的例子這個參數(shù)可能不足以聯(lián)系這兩種理論。TIMOSHENKO模型動態(tài)方程TIMOSHENKO模型的控制方程是10X?Θ?EIΘX?Y?GAT?Θ?RM0X?Θ?GAX?Y?GAT??M22S222S22S2Y2這種橫梁只在楊氏模量和橫斷面剪切模量下用均勻的彈性材料制成的。它的橫向的橫截面是帶有一個用AS和一個重要的慣性矩表示的有效的剪切區(qū)域雙重對稱的IAR2。有效面積AS也能用ΚAΚ表示,所謂的剪切校正系數(shù)是一個給出了截面上的平均張力的比率和圖心剪切應(yīng)變的無量綱的因數(shù)。它的重要取決
下載積分: 10 賞幣
上傳時間:2024-03-15
頁數(shù): 13
大小: 0.27(MB)
子文件數(shù):
-
簡介:104VOL28NO1CHENBAOFANBASICMECHANICALPROPERTIESANDMICROSTRUCTURALANALYSISBASICMECHANICALPROPERTIESANDMICROSTRUCTURALANALYSISOFRECYCLEDCONCRETECHENBAOFAN1,21COLLEGEOFCIVILENGINEERING,LIMINGVOCATIONALUNIVERSITY,QUANZHOU362000,CHINA2APPLIEDTECHNOLOGYENGINEERINGCENTEROFFUJIANPROVINCIALHIGHEDUCATIONFORPRACTICALCHEMICALMATERIAL,LIMINGVOCATIONALUNIVERSITY,QUANZHOU362000,CHINAABSTRACTTHEREGENERATIONAGGREGATE,NATURALAGGREGATE,PO425RPORTLANDCEMENT,COALFLYASH,ANDSLAGPOWDERSS95GRAININGBLASTFURNACE,HOMEMADEPAACOMA/PEGCARBOXYLICACIDWATERREDUCINGAGENT,WEREUSEDTOGETHERWITHRECYCLEDCONCRETEAGGREGATEINDIFFERENTREGENERATIONRATESTOPREPARERECYCLEDCONCRETERCTHEINFLUENCESOFDIFFERENTRENEWABLEAGGREGATERATIOSONTHEBASICRCREPLACEMENTMECHANICALPROPERTIES,UNIAXIALCOMPRESSIONSTRESSANDSTRAINCURVE,ANDTHEELASTICMODULUSANDREBOUNDVALUEWEREINVESTIGATEDTHERESULTSSHOWTHATRCMECHANICALPROPERTIESDECREASESWITHRENEWABLEAGGREGATEREPLACEMENTRATEINCREASINGTHEPROLONGATIONCANREDUCETHEREDUCEDSPANKEYWORDSRECYCLEDCONCRETERCREGENERATIONAGGREGATEREPLACEMENTRATEMECHANICALPROPERTIESUNIAXIALCOMPRESSIONSTRESS?WUHANUNIVERSITYOFTECHNOLOGYANDSPRINGERVERLAGBERLINHEIDELBERG2013RECEIVEDNOV05,2011ACCEPTEDAUG13,2012CHENBAOFAN陳寶璠ASSOCPROFEMAILCHENBAOFAN2008163COMFUNDEDBYFUJIANEDUCATIONDEPARTMENTNOSJA11329,JA12412,ANDQUANZHOUFUJIANTECHNOLOGYRESEARCHANDDEVELOPMENTPROGRAMNO2010G7DOI101007/S115950130649X1INTRODUCTIONNOWALARGEAMOUNTOFWASTECONCRETEHASBEENPRODUCEDTHEAMOUNTOFWASTECONCRETENOTONLYTAKESUPPRECIOUSLANDRESOURCES,BUTALSOCAUSESSERIOUSENVIRONMENTALANDSOCIALPROBLEMSTHEMOSTEFFECTIVEWAYTODISPOSETHEWASTECONCRETEISTORECYCLEANDREUSETHEABANDONEDCONCRETE,IE,THEAPPLICATIONOFRECYCLEDCONCRETERC1THEMECHANICALPROPERTIESOFTHERCPLAYAKEYROLEINTHEAPPLICATIONOFRCTECHNOLOGYMANYTESTSHAVEBEENDONEONTHEMECHANICALPROPERTIESOFTHERCBYDIFFERENTSCHOLARS25SOMERESEARCHERS617,HAVEFOCUSEDONTHEANALYSISOFTHERCCOMPRESSIVESTRENGTH,UNIAXIALTENSIONPERFORMANCE,ANDTHEFLEXURALSTRENGTHANGLE,ETALMORECOMPREHENSIVERESEARCHONMECHANICALPROPERTIESISLACKEDMECHANICALPROPERTYTESTS,INCLUDINGCUBICCOMPRESSIVESTRENGTH,TENSILESTRENGTHANDFLEXURALSTRENGTH,UNIAXIALCOMPRESSIONSTRESSANDSTRAINCURVE,THEELASTICMODULUSANDREBOUNDVALUEOFCOMPREHENSIVETESTARECARRIEDOUTINTHISPAPERADDITIONALLY,THERCMICROSTRUCTUREISDISCUSSEDTHERESEARCHPLAYEDAVERYIMPORTANTROLEONTHEAPPLICATIONOFRC2MATERIALSANDMETHODS21RAWMATERIALSCEMENTCPO425RCEMENTFLYASHFAIIGRADEFLYASHGRANULARBLASTFURNACESLAGPOWDERGBFSS95LEVELFINEAGGREGATESS40DESALINATIONSANDAND60MADESANDNATURALCOARSEAGGREGATESNAORDINARYGRAVELWITHPARTICLESIZESRANGINGFROM5TO25MMSUPERPLASTICIZERSUPEREFFECTIVEPLASTICIZERPAACOMA/PEGPOLYCARBOXYLICACIDPLASTICIZERRECYCLEDCOARSEAGGREGATESRCAABANDONEDCONCRETEWITHSTRENGTHGRADEOFC30ASTHEEXPERIMENTALTARGETAFTERTWOBROKENPROCESSING,THEPARTICLESIZERANGEDFROM5TO10MMWATERINDUSTRIALWATERTHEMAINPREPERTIESARELISTINTABLES1722TESTMATERIALPROPORTIONSTOSTUDYTHEBASICMECHANICALPROPERTIES,THERC,RC0,RC25,RC50,RC85,ANDRC100SERIESWEREINTRODUCEDTHEPROPORTIONSOFCONCRETEINTHESESERIESWEREBASEDONTHEZEROREPLACEMENTRATIOTHETESTSTRENGTHWASC25,ANDTHEWATERBINDERRATIO,W/BWHEREBISTHECEMENTMATERIALDOSAGEOFC,FA,ORGBFSWAS047THEFAANDGBFSWEREMIXEDANDTHETOTALNUMBEROFTHEMWASNOMORETHAN25THE106VOL28NO1CHENBAOFANBASICMECHANICALPROPERTIESANDMICROSTRUCTURALANALYSISTHESPECIMENSWERE150MM150MM150MMAND150MM150MM300MM,RESPECTIVELYFORCUBICANDUNIAXIALCOMPRESSIONTESTSTHESPECIMENSIZEFORTENSILEANDFLEXURALSTRENGTHTESTWAS150MM150MMWHITECONCRETEWITHTHREELAYERSOFMOLDINGWEREPUTONTHEVIBRATIONBENCHAFTER1DOFSTRIPPING,THEMOLDINGWASPLACEDINACURINGROOMAT20±3℃ANDRELATIVEHUMIDITYABOVE9023TESTMETHODSRCSPECIMENSCOMPRESSIVESTRENGTHTESTWASPERFORMEDACCORDINGTO“THEORDINARYCONCRETEMECHANICSPERFORMANCETESTMETHOD“GB500812002SPECIMENSAREWIPEDCLEAN,ANDPLACEDUNDERPRESSUREPLATESADDLOTUSSHOULDBECONTINUOUSANDEVEN,ANDADDLOTUSSPEEDIS0510MPA/SRECORDTHEMAXIMUMLOADFN,ANDTHEBEARINGPRESSUREFCUOFRCCANBECALCULATED1WHEREFISTHEBEARINGPRESSUREOFRCTESTSPECIMEN,MPAAISTHEBEARINGAREAOFRCTESTSPECIMEN,MM2RCSPECIMENSUNIAXIALTENSILESTRENGTHTESTWASPERFORMEDACCORDINGTO“THEORDINARYCONCRETEMECHANICSPERFORMANCETESTMETHOD“GB500812002BODYSPECIMENS150MM150MM450MMWEREONBOTHENDSOFTHESTEELPLATEINORDERTOREFLECTTHEREGENERATIONOFTHECONCRETEUNIAXIALTENSILEPROPERTIES,SPECIMENSWEREWITHOUTLEAVEGAPSRECORDTHEMAXIMUMLOADFN,ANDTHECOMPRESSIVESTRENGTHOFCONCRETESAMPLESFTCANBECALCULATED2RCSPECIMENSFLEXURALSTRENGTHTESTWASPERFORMEDACCORDINGTO“THEORDINARYCONCRETEMECHANICSPERFORMANCETESTMETHOD“GB500812002SPECIMENS150MM150MM550MMISFIRMADDLOTUSSHOULDBECONTINUOUSANDEVEN,ANDADDLOTUSSPEEDIS005MPA/SRECORDLOADFN,ANDTHEFLEXURALSTRENGTHFFCANBECALCULAED3WHERELISSPACEBETWEENADMINICULAS,MMBISSECTIONWIDTHOFRCTESTSPECIMEN,MMHISSECTIONWIDTHOFRCTESTSPECIMEN,MMACCORDINGTO“THEREBOUNDMETHODOFDETECTIONCONCRETECOMPRESSIVESTRENGTHTECHNICALREGULATIONS“JGJ/T232001,THREECUBES150MM150MM150MMWEREOBTAINED4WHERERISTHEREBOUNDVALUEMAISTHEAVERAGEVALUEOFNONLEVELSTATEIIISTHEMEASURINGPOINTANDTHENFINDTHECORRESPONDINGLEVELOFDETECTINGSTATEREBOUNDVALUERMRMARSA5WHEREMISTHECALCULATIONVALUEOFNONLEVELSTATESAISTHECORRECTEDVALUEOFNONLEVELSTATESEMWEREUSEDFORTHEMICROSTRUCTUREANALYSIS3RESULTSANDDISCUSSION31BASICMECHANICALPROPERTIESOFTHERCATAWATERBINDERRATIOOF047,THEMECHANICALPROPERTIESOFRENEWABLEAGGREGATESWITHDIFFERENTREPLACEMENTRATIOSCHANGEDWITHAGE,ASSHOWNINFIG1THEFIGURESHOWSTHATTHERCCUBICCOMPRESSIVESTRENGTH,UNIAXIALTENSILESTRENGTH,ANDFLEXURALSTRENGTH
下載積分: 10 賞幣
上傳時間:2024-03-13
頁數(shù): 6
大?。?0.39(MB)
子文件數(shù):
-
簡介:INTERNATIONALJOURNALOFMACHINETOOLSRECEIVEDINREVISEDFORM20FEBRUARY2004ACCEPTED22APRIL2004ABSTRACTTYPICALLY,THETERM‘‘HIGHSPEEDDRILLING’’ISRELATEDTOSPINDLECAPABILITYOFHIGHCUTTINGSPEEDSTHESUGGESTEDHIGHSPEEDDRILLINGMACHINEHSDMEXTENDSTHISTERMTOINCLUDEVERYFASTANDACCURATEPOINTTOPOINTMOTIONSTHENEWHSDMISCOMPOSEDOFAPLANARPARALLELMECHANISMWITHTWOLINEARMOTORSASTHEINPUTSTHEPAPERISFOCUSEDONTHEKINEMATICANDDYNAMICSYNTHESISOFTHISPARALLELKINEMATICMACHINEPKMTHEKINEMATICSYNTHESISINTRODUCESANEWMETHODOLOGYOFINPUTMOTIONPLANNINGFORIDEALDRILLINGOPERATIONANDACCURATEPOINTTOPOINTPOSITIONINGTHEDYNAMICSYNTHESISAIMSATREDUCINGTHEINPUTPOWEROFTHEPKMUSINGASPRINGELEMENT2004ELSEVIERLTDALLRIGHTSRESERVEDKEYWORDSPARALLELKINEMATICMACHINEHIGHSPEEDDRILLINGKINEMATICANDDYNAMICSYNTHESIS1INTRODUCTIONDURINGTHERECENTYEARS,ALARGEVARIETYOFPKMSWEREINTRODUCEDBYRESEARCHINSTITUTESANDBYINDUSTRIESMOST,BUTNOTALL,OFTHESEMACHINESWEREBASEDONTHEWELLKNOWNSTEWARTPLATFORM1CONFIGURATIONTHEADVANTAGESOFTHESEPARALLELSTRUCTURESAREHIGHNOMINALLOADTOWEIGHTRATIO,GOODPOSITIONALACCURACYANDARIGIDSTRUCTURE2THEMAINDISADVANTAGESOFSTEWARTTYPEPKMSARETHESMALLWORKSPACERELATIVETOTHEOVERALLSIZEOFTHEMACHINEANDRELATIVELYSLOWOPERATIONSPEED3,4WORKSPACEOFAMACHINETOOLISDEFINEDASTHEVOLUMEWHERETHETIPOFTHETOOLCANMOVEANDCUTMATERIALTHEDESIGNOFAPLANARSTEWARTPLATFORMWASMENTIONEDIN5ASANAFFORDABLEWAYOFRETROFITTINGNONCNCMACHINESREQUIREDFORPLASTICMOULDSMACHININGTHEDESIGNOFTHEPKM5ALLOWEDADJUSTABLEGEOMETRYTHATCOULDHAVEBEENOPTIMALLYRECONFIGUREDFORANYPRESCRIBEDPATHTYPICALLY,CHANGINGTHELENGTHOFONEORMORELINKSINACONTROLLEDSEQUENCEDOESTHEADJUSTMENTOFPKMGEOMETRYTHEAPPLICATIONOFTHEPKMSWITH‘‘CONSTANTLENGTHLINKS’’FORTHEDESIGNOFMACHINETOOLSISLESSCOMMONTHANTHETYPEWITH‘‘VARYINGLENGTHLINKS’’ANEXCELLENTEXAMPLEOFA‘‘CONSTANTLENGTHLINKS’’TYPEOFMACHINEISSHOWNIN6RENAULTAUTOMATIONCOMAUHASBUILTTHEMACHINENAMED‘‘URANESX’’THEHSDMDESCRIBEDHEREINUTILIZESAPARALLELMECHANISMWITHCONSTANTLENGTHLINKSDRILLINGOPERATIONSAREWELLINTRODUCEDINTHELITERATURE7ANEXTENSIVEEXPERIMENTALSTUDYOFHIGHSPEEDDRILLINGOPERATIONSFORTHEAUTOMOTIVEINDUSTRYISREPORTEDIN8DATAWASCOLLECTEDFROMHUNDREDSCONTROLLEDDRILLINGEXPERIMENTSINORDERTOSPECIFYTHEPARAMETERSREQUIREDFORQUALITYDRILLINGIDEALDRILLINGMOTIONSANDGUIDELINESFORPERFORMINGHIGHQUALITYDRILLINGWEREPRESENTEDIN9THROUGHTHEORETICALANDEXPERIMENTALSTUDIESINTHESYNTHESISOFTHESUGGESTEDPKM,WEFOLLOWTHESUGGESTIONSIN9THEDETAILEDMECHANICALSTRUCTURESOFTHEPROPOSEDNEWPKMWEREINTRODUCEDIN10,11ONEPOSSIBLECONFIGURATIONOFTHEMACHINEISSHOWNINFIG1ITHASLARGEWORKSPACE,HIGHSPEEDPOINTTOPOINTMOTIONANDVERYHIGHDRILLINGSPEEDTHEPARALLELMECHANISMPROVIDESY,ANDZAXESMOTIONSTHEXAXISMOTIONISPROVIDEDBYTHETABLEFORACHIEVINGHIGHSPEED?CORRESPONDINGAUTHORTEL17346477325FAX17346150312EMAILADDRESSLIZHEUMICHEDUZLI08906955/SEEFRONTMATTER2004ELSEVIERLTDALLRIGHTSRESERVEDDOI101016/JIJMACHTOOLS200404007WHERENISTHENUMBEROFTHEMOVINGLINKSMI,IGIAREMASSANDMASSMOMENTOFINERTIAOFLINKIYGI,ZGIARETHECOORDINATESOFTHECENTEROFMASSOFLINKIHIISTHEROTATIONANGLEOFLINKIINTHEPKMMODULETHEGENERALIZEDFORCEQJCANBEDETERMINEDBYQJ??VQJTXNI?1F0IRIQJD9TWHEREVISTHEPOTENTIALENERGYANDF0IARETHENONPOTENTIALFORCESFORTHEDRILLINGOPERATIONOFTHEPKMMODULE,WEHAVEQ1Q2????GP5I?2MI_ZGI_Y1?FCUT_ZG3_Y1TF1?GP5I?2MI_ZGI_Y6?FCUT_ZG3_Y6TF689D10TWHEREFCUTISTHECUTTINGFORCE,F1ANDF6ARETHEINPUTFORCESEXERTEDONTHEPKMBYTHELINEARMOTORSEQS1TO10FORMTHEKINEMATICANDDYNAMICEQUATIONSOFTHEPKMMODULEWITHRIGIDLINKS22EQUATIONSOFMOTIONOFTHEPKMMODULEWITHELASTICLINKSTHEDYNAMICDIFFERENTIALEQUATIONSOFACOMPLIANTMECHANISMCANBEDERIVEDUSINGTHEFINITEELEMENTMETHODANDTAKETHEFORMOF?M?N?NF€DGN?1T?C?N?NF_DGN?1T?K?N?NFDGN?1?FRGN?1D11TWHEREM,CANDKARESYSTEMMASS,DAMPINGANDSTIFFNESSMATRIX,RESPECTIVELY{D}ISTHESETOFGENERALIZEDCOORDINATESREPRESENTINGTHETRANSLATIONANDROTATIONDEFORMATIONSATEACHELEMENTNODEINGLOBALCOORDINATESYSTEM{R}ISTHESETOFGENERALIZEDEXTERNALFORCESCORRESPONDINGTO{D}NISTHENUMBEROFTHEGENERALIZEDCOORDINATESELASTICDEGREESOFFREEDOMOFTHEMECHANISMINOURFEAMODEL,WEUSEFRAMEELEMENTSHOWNINFIG3INWHICHEIEISTHEBENDINGSTIFFNESSEISTHEMODULUSOFELASTICITYOFTHEMATERIAL,IEISTHEMOMENTOFINERTIA,QISTHEMATERIALDENSITY,LEISTHEORIGINALLENGTHOFTHEELEMENTDII?1,2,,6ARENODALDISPLACEMENTSEXPRESSEDINLOCALCOORDINATESYSTEMX,YTHEMASSMATRIXANDSTIFFNESSMATRIXFORTHEFRAMEELEMENTWILLBE6?6SYMMETRICMATRICESWHICHCANBEDERIVEDFROMTHEKINETICENERGYANDSTRAINENERGYEXPRESSIONSASEQS12AND13DDTT_D???TD????M?EF€DGD12TUD????K?EFDGD13TWHERETISTHEKINETICENERGYANDUISTHESTRAINENERGYOFTHEELEMENTFDG??D1D2D3D4D5D6?T,ARETHELINEARANDANGULARDEFORMATIONSOFTHENODEATTHEELEMENTLOCALCOORDINATESYSTEMDETAILEDDERIVATIONSCANBEFOUNDIN14TYPICALLY,ACOMPLIANTMECHANISMISDISCRETIZEDINTOMANYELEMENTSASINFINITEELEMENTANALYSISEACHELEMENTISASSOCIATEDWITHAMASSANDASTIFFNESSMATRIXEACHELEMENTHASITSOWNLOCALCOORDINATESYSTEMWECOMBINETHEELEMENTMASSANDSTIFFNESSMATRICESOFALLELEMENTSANDPERFORMCOORDINATETRANSFORMATIONSNECESSARYTOTRANSFORMTHEELEMENTLOCALCOORDINATESYSTEMTOGLOBALCOORDINATESYSTEMTHISGIVESTHESYSTEMMASSMANDSTIFFNESSKMATRICESCAPTURINGTHEDAMPINGCHARACTERISTICSINACOMPLIANTSYSTEMISNOTSOSTRAIGHTFORWARDEVENTHOUGH,INMANYAPPLICATIONS,DAMPINGMAYBESMALLBUTITSEFFECTONTHESYSTEMSTABILITYANDDYNAMICRESPONSE,ESPECIALLYINTHERESONANCEREGION,CANBESIGNIFICANTTHEDAMPINGMATRIXCCANBEWRITTENASALINEARCOMBINATIONOFTHEMASSANDSTIFFNESSMATRICES15TOFORMTHEPROPORTIONALDAMPINGCWHICHISEXPRESSEDAS?C??A?M?TB?K?D14TWHEREAANDBARETWOPOSITIVECOEFFICIENTSWHICHAREUSUALLYDETERMINEDBYEXPERIMENTANALTERNATEMETHOD16OFREPRESENTINGTHEDAMPINGMATRIXISEXPRESSINGCAS?C???M??C0?D15TTHEELEMENTOFC0ISDEFINEDASC0IJ?2FDSIGNKIJTDKIJMIJT12,WHERESIGNKIJ?DKIJKIJ????T,KIJANDMIJARETHEELEMENTSOFKANDM,FISTHEDAMPINGRATIOOFTHEMATERIALTHEGENERALIZEDFORCEINAFRAMEELEMENTISDEFINEDASREI?XMJ?1FXJXJDITFYJYJDITMHJHJDI??DI?126TD16TWHEREFJANDMJARETHEJTHEXTERNALFORCEANDMOMENTINCLUDINGTHEINERTIAFORCEANDMOMENTONTHEELEMENTACTINGATXJ,YJ,ANDMISTHENUMBEROFTHEEXTERNALFIG3APLANARFRAMEELEMENTRKATZ,ZLI/INTERNATIONALJOURNALOFMACHINETOOLSMANUFACTURE4420041381–13891383
下載積分: 10 賞幣
上傳時間:2024-03-13
頁數(shù): 9
大?。?0.59(MB)
子文件數(shù):
-
簡介:FIELDINVESTIGATIONSOFTHESTATICBEHAVIOROFANAVIGATIONLOCKCHAMBERMABURMISTROVANDYUKKOTENKOVUDC62786812087282247415THEVOTKINDOUBLELANE,SINGLELIFTNAVIGATIONLOCKISONEOFTHESTRUCTURESOFTHEHYDROELECTRICCOMPLEXONTHEKAMARIVERITISSITUATEDINTHEAREAOFTHELEFTBANKEARTHDAMANDEXTENDSINTOTHEHEADWATER,ANDATITSBASEARESILTYDENSECLAYSTHEREINFORCEDCONCRETE,LIGHTWEIGHTDOCKTYPELOCKCHAMBERSWITHACONTINUOUSBOTTOMHAVEAWIDTHOF30M,USEFULLENGTHOF290M,ANDARESEPARATEDOVERTHEIRLENGTHBYCONTRACTIONSETTLINGJOINTSINTOEIGHTSECTIONSTHE28MHIGHCHAMBERWALLSMADEOFMONOLITHICREINFORCEDCONCRETEARERIGIDLYCONNECTEDWITHTHEPRECASTMONOLITHICFLOORSLABOFTHECULVERTSFIG1FORTWOYEARSTHELOCKWASOPERATEDACCORDINGTOTHETEMPORARYSCHEMEBACKFILLOFRECESSESBYSANDTOANELEVATIONOF190M,HEAD16MIN1964THEMAINCONSTRUCTIONOPERATIONSWERECOMPLETED,ANDTHEHEADONTHECHAMBERWALLSREACHEDTHEDESIGNMAGNITUDEOF23MTHEBACKFILLWASNOTRAISEDINORDERTOREDUCETHELOADONTHECHAMBERWALLSREINFORCEDCONCRETEDISCHARGEBOXESWERECONSTRUCTEDABOVETHE190MELEVATIONTHESPACEBETWEENTHEWALLSANDTHEBOXESWASBACKFILLEDWITHASANDGRAVELMIXTURETHETOPOFTHECHAMBERWALLSWASANCHOREDINTOTHEBACKFILLINORDERTOCONDUCTFIELDINVESTIGATIONSWEINSTALLED333REMOTECONTROLLEDINSTRUMENTSINTHELOCKCHAMBERSBETWEEN1961AND1963,OFWHICH307AREPRESEMLYOPERATINGTHELAYOUTOFTHEINSTRUMEMSISSHOWNINFIGITHEINVESTIGATIONSCALLEDFORASTUDYOFTHEFOLLOWINGPROBLEMSAEARTHPRESSUREANDDEFORMATIONOFCHAMBERWALHBTEMPERATUREREGIMESOFTHEINVESTIGATEDELEMENTSCSTRESSSTATESINTHEBOTTOM,FLOORSLABSOFTHECULVERTS,ANDCHAMBERWAILSDCONDITIONOFTHEBLOCKJOINTSOFTHECHAMBERWALLSFORTHEINVESTIGATIONSWEUSEDREMOTECONTROLLEDSTRINGTYPESENSORSREINFORCEMENTANDSOILDYNAMOMETERS,PIEZODYNAMOMETERSANDRESISTANCESENSORSGAPGAUGES,SEMICONDUCTORTHERMOMETERS,ANDSOILDISPLACEMENTMEASURINGDEVICESTHEMAGNITUDEOFDEVIATIONOFTHETOPOFTHEWALLSFROMTHEAVERAGEPOSITIONBOTHWITHRESPECTTOSEASONSOFTHEYEARANDDURINGLOCKAGEWASDETERMINEDBYSURVEYINGEARTHPRESSUREOFTHEBACKFILLANDDEFORMATIONSOFTHECHAMBERWALLSTHECHARACTERISTICNORMALPRESSUREDIAGRAMSBASEDONREADINGSOFTHESOILDYNAMOMETERSAREGIVENINFIG2ANEXAMINATIONOFTHEDIAGRAMSCONSTRUCTEDFROMTHEINSTRUMENTREADINGSIN1962,WHENTHEBACKFILLCONSISTEDOFMADEGROUND,SHOWSTHECHARACTERISTICSOFTHEPRESSUREDISTRIBUTIONOVERTHEWALLHEIGHTINTHESECTIONOFTHEWALLWITHANINCLINEDBACK,THEFORMOFTHEPRESSUREDIAGRAMISCLOSELYTRIANGULARWITHAMAXIMUMATADEPTHOFABOUT14MFROMTHEFILLSURFACEBELOWTHEMAXIMUM,ATADEPTHOF1419M,WHERETHEHACKOFTHEWALLISVERTICAL,THEEARTHPRESSUREDECREASEDUNEVENLYDURINGLOCKAGETHETOTALPRESSUREONTHEWALLINCREASEDUPONFILLINGANDDECREASEDUPONEMPTYINGTHECHAMBERBYANAVERAGEOF30THECHANGEOFPRESSUREOVERTHEWALLHEIGHTWASVARIABLETHUS,ONFILLINGTHECHAMBERTHEPRESSUREINTHEUPPERPARTOFTHEWALLINCREASEDSTRONGLY,REMAINEDUNCHANGEDINTHEMIDDLE,ANDDECREASEDSOMEWHATINTHELOWERPARTONEMPTYINGTHECHAMBER,PRESSURECHANGESOCCURREDINTHEOPPOSITEORDERATTHEENDOFTHE1962NAVIGATIONSEASONTHEUPPERPARTOFTHEMADEGROUNDINTHELEFTRECESSWASREMOVEDTOGDEPTHOF13MANDBYTHESTARTOFTHE1963NAVIGATIONSEASONWASREPLACEDBYHYDRAULICFILL,AFTERWHICHTHEPRESSUREINTHELOWERPARTOFTHEWALLINCREASEDANDINTHEUPPERPARTDECREASEDTHEPRESENCEOFINDIVIDUALUPSANDDOWNSONTHEDIAGRAMSISEXPLAINEDBYTHEINHOMOGENEITYOFTHEFILLDIRTTHECHARACTEROFCHANGEOFTHEPRESSUREDIAGRAMUPONFILLINGTHECHAMBERDURINGLOCKAGEIN1963WASRETAINEDTOEVALUATETHEMEASUREDPRESSUREVALUES,THEPRESSUREORDINATESCALCULATEDFORTHEFOLLOWINGPHYSICOMECHANICALCHARACTERISTICSOFTHESOIL,ADOPTEDFROMTHEDATAOFTHECONSTRUCTIONLABORATORY,AREPLOTTEDINFIG2THEAVERAGEUNITWEIGHTABOVEGROUNDWATERLEVELWAS178T/M3,BELOWGROUNDWATERLEVEL100T/MS,ANGLEOFINTERNALTENTATIVEELEVATIONSTRANSLATEDFROMGIDROTEKHNICHESKOESTROITELSTVO,NO3,PP3338,MARCH,1967248250MABURMISTROVANDYUTCKOTENKOVUPPERPOOLOLLG2G,7,SG28I63G,SG4,GTETL6OGROLGGGGROUND“2IWATERIROUNDWELEVEL,GROUNDWATERROUNDWATER,LEVELUPPERIL,IILII,JIL,,IIIIIKG/ZTOKG/CMZ2,0KG/CM22TOKG/CM2ZTOKG/CMZZT0KG/CMZG0,200,20,GCM2AL“UPPERPOOL,6_H,7I/83G2OZ/SSG,LR6,G,,8G,LF8GUPPER?92GROUNDGROUNDWATER_/WATERROUND_WATER,ZTEVELGROUNDWATER/LEVE1T,TG\“LEVETGTLLEVEL““TLOWER3POOL\\3,,,IIIIIIO2KG/CMZT2KG/CM0D0,GKG/CM0ZKG/CMZ0TZKG/CMBFIGDIAGRAMSOFNORMALEARTHPRESSUREONCHAMBERWALLSTAKINGINTOACCOUNTWATERPRESSURE,ANORMALEARTHPRESSUREONLEFTWALLOFFOURTHSECTIONBNORMALEARTHPRESSUREONRIGHTWALLOFFOURTHSECTIONIINCREASEOFPRESSUREUPONFILLINGCHAMBERFROMLOWERPOOLTOUPPERPOOLELEVATIONLEFTWALLIDINCREASEOFPRESSUREUPONFITTINGCHAMBERFROMLOWERPOOLELEVATIONTOUPPERPOOLELEVATIONRIGHTWALLIEARTHPRESSUREINCHAMBERATLOWERPOOLELEVATION2SAMEATUPPERPOOLELEVATION3DESIGNPRESSUREFORTHESTATEOFLIMITEQUILIBRIUMAFTERCOULOMB4SAMEFORTHESTATEOFRESTTHEWINTERINTHELATTERCASETHEWALLISBENTASARESULTOFACHANGEOFWATERLEVELINTHECHAMBERBASEDONTHEDATAOF73MEASUREMENTSOVERAPERIODOF15YEARS,THEMAXIMUMHORIZONTALDEVIATIONSOFTHETOPOFTHEWALLSOFTHEFOURTHSECTIONFROMTHEORIGINALPOSITION,THATOFTHEWAILSONJUNE18,1963WITHADRYCHAMBER,WERE,FORTHELEFTWALL,43MMTOWARDTHECHAMBERDURINGTHEWINTERAND17MMTOWARDTHEFILLDURINGTHESUMMER,ANDFORTHERIGHTWALL48AND17RAM,RESPECTIVELYTHETOTALRANGEOFTHEHORIZONTALDISPLACEMENTSOFTHETOPOFTHECHAMBERWALLSFROMTEMPERATUREFLUCTUATIONSDURINGTHEYEARREACHED6065RAMTHEMAXIMUMVALUESOFWALLDISPLACEMENTSDURINGLOCKAGEWERE16MMFORTHELEFTWALLAND2,8MMFORTHERIGHTANEXCESSPRESSUREDURINGTIDINGOFTHERIGHTCHAMBEROFTHELOCKWASRECORDEDONTHERIGHTWALLOFTHELEFTCHAMBERDURINGTHENAVIGATIONSEASONOF1964ATACONSTANTWATERLEVELINTHELEFTCHAMBERTHESOILDYNAMOMETSINSTALLEDONITSWALLDEFINITELYREACTEDTOFILLINGOFTHERIGHTCHAMBERTHEINCREASEOFEARTHPRESSURE,ACCORDINGTOTHEIRREADINGS,WASOFTHESAMEORDERASWHENFILLINGTHELEFTCHAMBERFIG4SOILDISPLACEMENTSALONGTHEBACKOFTHEWALL,ACCORDINGTOTHEREADINGSOFTHEREMOTECONTROLLEDDISPLACEMENTMEASURINGDEVICES,WERE9MMATANELEVATIONOF85M,62MMAT154M,AND82MMAT181MTEMPERATUREREGIMEOFCHAMBERELEMENTSTHERMOMETERSPLACEDINTHESTRUCTUREMADEITPOSSIBLETODETERMINETHEVARIATIONWITHTIMEOFTHECONCRETETEMPERATUREINTHEBOTTOM,FLOORSLABSOFTHECULVERTS,ANDWALLSOFTHELOCKCHAMBERMAXIMUMEXOTHERMICHEATINGOFTHECONCRETEWASOBSERVEDDL/RINGCONCRETINGOFTHECHAMBERWALLSANDREACHED8540THETEMPERATUREOFTHEBOTTOMCONCRETEBETWEEN1961AND1968VARIEDFROM0TO18DURINGBOAWINTERSTHEBOTTOMWASCOVEREDBYCONSTRUCTIONDEBRISORDIRTDURINGTHEWINTEROF1963/64ADROPOFTHECONCRETETEMPERATURETO8WASNOTEDINTHEUPPERPARTOFTHEBOTTOMAFTERITSCLEANING
下載積分: 10 賞幣
上傳時間:2024-03-14
頁數(shù): 7
大?。?0.52(MB)
子文件數(shù):