外文翻譯---了解礦區(qū)水和鹽的動(dòng)態(tài) ,支持集成水質(zhì)和質(zhì)量管理_第1頁(yè)
已閱讀1頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p>  本科畢業(yè)設(shè)計(jì)(論文)</p><p>  外 文 翻 譯</p><p><b>  原文:</b></p><p>  Understanding mine site water and salt dynamics to support integrated water quality and quantity m

2、anagement</p><p>  Water reuse is becoming an integral component of the water management strategy on mine sites. This practise is being driven by corporate sustainability goals, community and societal pressu

3、res to demonstrate improved water stewardship, as well as climate and regulatory pressures. However, water reuse often results in water quality compromise which can then result in decreased recovery through problems in p

4、rocessing circuits, product quality, and an increased likelihood of discharge of water that </p><p>  Introduction</p><p>  The need for sustainable water management practises is being driven by

5、 corporate sustainability goals, increased public scrutiny of water use, management, and environmental stewardship, the relative economics of increasing reuse against the alternative of increased supply of fresh water an

6、d climate conditions. The ability to simultaneously meet water quantity, water quality and product quality objectives is becoming an increasingly challenging component of water management on mine sites. However</p>

7、<p>  In the coal industry, there has been considerable investment in improving water management on sites. This has been driven by widespread and prolonged drought as well as corporate targets for freshwater savin

8、gs. Over the last decade most sites have adopted water reuse as a means for making freshwater savings. However, water reuse results in increased salinity in site water stores (Moran et al, 2006). The increase in salinity

9、 is driven largely by evaporation and ongoing salt inputs from spoil, coa</p><p>  In order to manage both water quality and quantity in an integrated system to meet multiple objectives on coal mines require

10、s an understanding of the nature and sources of salts; the dynamics of the salt fluxes on a site; and the impact of water quality on production and product quality. These factors must also be balanced against the risk of

11、 non-compliant discharge. The aim of this work was to increase understanding of the mine and climate conditions that result in salt fluxes from various part</p><p>  This paper will present data that illustr

12、ate the responses of representative water bodies on the sites to changing climatic conditions. Previous modelling of water and salt fluxes has assumed that salts behave conservatively, ie that salt concentration of a wat

13、er body will only change in direct proportion to the mixing of input waters with different salt concentrations (eg Moran et al, 2006). While this is a generally acceptable assumption for predicting total salt concentrati

14、ons and the overall</p><p>  One of the difficulties in understanding the dynamics of water and salts on mine sites is that it is difficult to distinguish between water from different sources and therefore a

15、ccurately attribute salt fluxes. Inputs from a number of water sources, eg groundwater, run-off, etc cannot be metered. In this work stable isotopes Oxygen- 18 (denoted d18O) and Deuterium (denoted dD) have been used in

16、conjunction with geochemical signatures to trace inputs from these unmetered water sources</p><p>  6 Times series of cation (top) and anion (bottom) concentration changes determined in surface waters of Pit

17、F. Average (z1 sd). Deep water concentrations are shown for comparison</p><p>  7 Cation (top) and Anion (bottom) composition of run-off from spoil and road</p><p>  Run-off composition</p>

18、;<p>  Although run-off from spoil is not a large input to Pit F due to the small catchment area, the contribution via this process appears to impact the surface water ion composition as discussed below. This proc

19、ess may have a more pronounced impact on the water quality of water stores with larger catchment areas or areas with highly active spoil. Changes to rainfall composition during runoff from spoil and roads is shown in Fig

20、ure 7 and total concentrations as a proportion of total ions in Figure 8. </p><p>  What is apparent from Figures 7 and 8 is that there is considerable variability in both the amount of salts delivered via r

21、un-off and the relative proportion of ions in solution. Comparison of the ratio of Ca, Mg relative to Na and Cl : SO4 between Pit F run-off and rain composition is consistent with the observed changes in surface water co

22、mposition shown in Figure 6. Variability between the spoil run-off samples is likely to reflect spatial variability in the spoil properties across the site. </p><p>  8 Relative proporation of cations (top)

23、and anions (bottom) determined in run-off from spoil and haul roads</p><p>  etal(this volume) suggested that both salt dissolution and cation exchange with clays may be important mechanisms by which the cat

24、ion composition changes during run-off fro spoil. Comparison of average pit water composition for Pit F and Qs with run-off composition and sequentially extracted salt and exchangeable fractions frmom spoil samples (Figu

25、re 10) suggests that the mechanism by which cations are mobilised to solution are also spatially variable. The dynamics of cation composition in Pit Q</p><p>  Providing consistent water quality for coal was

26、hing</p><p>  In most cases sites can adapt processes to accommodate different water quality. For example, most coal mines in the Bowen Basin have shifted from using freshwater to salty water for coal washin

27、g. In this instance switching to salty water provided benefits by improving flotation with reduced reagent use (Ofori et al, 2005). However, in situations where water quality changes on relatively short time scales such

28、as shown in Figure 4, adaptation is not usually possible because in most cases sites do</p><p>  At German Creek providing relatively consistent water quality for coal washing, even during extraordinary rain

29、fall events, is possible because the water management system is based around a central water store. Vertical profiles of conductivity in Pit F showed that prior to the rainfall events in February 2008 the conductivity of

30、 the pit was constant throughout the Pit (Figure 5). Subsequent to the rainfall events, surface salinity decreased in surface waters while the conductivity of water below</p><p>  Conclusions</p><

31、p>  This paper has put forward the proposition that the separate management of water quantity and quality is resulting in suboptimal water management outcomes. Data have been presented that demonstrate considerable te

32、mporal and spatial variation of salinity concentrations and salt constituents (cations and anions). A number of physical and physico-chemical processes have been invoked to explain site observations. Water quantity, wate

33、r ionic make-up and stable isotope measurements have been integrate</p><p>  Source: S. Vink1, C. J. Moran2, S. D. Golding3, K. Baublys4 and V. Nanjappa5. Understanding mine site water and salt dynamics to s

34、upport integrated water quality and quantity management. Mining Technology,2009,VOL 118:185-192</p><p><b>  譯文:</b></p><p>  了解礦區(qū)水和鹽的動(dòng)態(tài) ,支持集成水質(zhì)和質(zhì)量管理</p><p>  對(duì)礦區(qū)水的回收利用問(wèn)題

35、,正在成為水資源戰(zhàn)略管理的組成部分。企業(yè)可持續(xù)發(fā)展的目標(biāo),社區(qū)和社會(huì)所表現(xiàn)出對(duì)改善水資源管理的要求的壓力以及氣候和監(jiān)管壓力,推動(dòng)著這種做法的實(shí)現(xiàn)。然而,水的循環(huán)利用會(huì)導(dǎo)致對(duì)水質(zhì)的妥協(xié),這種妥協(xié)方法又會(huì)進(jìn)一步地通過(guò)對(duì)電路,產(chǎn)品質(zhì)量的處理,減少其覆蓋面和增加不符合環(huán)保法規(guī)要求的水資源的電解的可能性。在大多數(shù)礦區(qū),通常會(huì)出現(xiàn)水量管理和作為一個(gè)單獨(dú)環(huán)境問(wèn)題處理的水質(zhì)管理之間的脫節(jié)。水的質(zhì)量和數(shù)量必須作為一個(gè)綜合系統(tǒng)進(jìn)行管理正變得越來(lái)越明顯、清楚

36、。為了實(shí)現(xiàn)水及其成分的多個(gè)動(dòng)態(tài)目標(biāo),對(duì)于水質(zhì)管理和水量管理的整合必須要了解。通過(guò)使用Bowen盆地中的某煤礦的一項(xiàng)研究的例子,本文將對(duì)工地上的水和鹽的動(dòng)態(tài)進(jìn)行概述。本文只是關(guān)于水資源開(kāi)采問(wèn)題某一方面的研究。 </p><p><b>  簡(jiǎn)介</b></p><p>  水資源管理的可持續(xù)做法的必要性是由以下因素決定的:(一)企業(yè)可持續(xù)發(fā)展的目標(biāo),(二)公眾對(duì)水資源的

37、利用、管理和對(duì)環(huán)境管理的監(jiān)督力度的提高,(三),對(duì)新的水資源供應(yīng)量的增加進(jìn)行抵制,從而增加重復(fù)使用的相對(duì)經(jīng)濟(jì)理論的提出(四)氣候條件的需要。在礦區(qū),同時(shí)滿足水量,水質(zhì)和產(chǎn)品質(zhì)量正在成為水資源管理的目標(biāo)中的一個(gè)越來(lái)越具有挑戰(zhàn)性的組成部分。然而,由于礦址上的水資源系統(tǒng)作為在自然氣候驅(qū)動(dòng)系統(tǒng)和網(wǎng)狀設(shè)計(jì)之間具有反饋和相互作用的復(fù)雜系統(tǒng),它對(duì)于來(lái)自僅僅考慮一個(gè)目標(biāo)集而產(chǎn)生的水資源管理決策卻往往有意想不到的的影響。</p><p

38、>  對(duì)于煤炭行業(yè),在改善水資源的管理上已經(jīng)有相當(dāng)大的投入。這不僅是普遍和長(zhǎng)期干旱的驅(qū)動(dòng),也是企業(yè)儲(chǔ)蓄淡水的目標(biāo) 。在過(guò)去的十年時(shí)間里,大部分工地都采用了水資源的回收利用,將其作為節(jié)約淡水的一種手段。然而,在工地中,水的回收利用卻導(dǎo)致了鹽度的增加(莫蘭等人,2006年)。鹽度增加主要由于泥土,煤炭、地下水中的鹽的蒸發(fā)和持續(xù)投入所驅(qū)動(dòng)的。在管理水資源、環(huán)境、效率、產(chǎn)品質(zhì)量及操作/維護(hù)時(shí),對(duì)溶解鹽進(jìn)行有效管理可以給風(fēng)險(xiǎn)和加工成本的減少

39、提供機(jī)會(huì)。</p><p>  為了滿足煤炭的多重目標(biāo),在一個(gè)綜合系統(tǒng)中對(duì)水質(zhì)及水量進(jìn)行管理就需要對(duì)鹽的來(lái)源和本質(zhì)有所認(rèn)識(shí)。工地上鹽的流量的動(dòng)態(tài)和水質(zhì)量對(duì)產(chǎn)品及產(chǎn)品質(zhì)量會(huì)產(chǎn)生影響,因此對(duì)這些不符合排放規(guī)定的的風(fēng)險(xiǎn)因素也必須得到平衡。這項(xiàng)工作的目的是當(dāng)鹽流量從礦區(qū)的各個(gè)部分進(jìn)入到礦井水網(wǎng)系統(tǒng)時(shí),提高對(duì)礦井和氣候條件的了解。有了這些信息,為了滿足資源管理的多種目標(biāo),業(yè)務(wù)指南可允許工地對(duì)水資源管理系統(tǒng)進(jìn)行主動(dòng)開(kāi)發(fā),而不

40、是被動(dòng)的。</p><p>  在工地里,具有代表性的水體對(duì)于不斷變化的氣候條件產(chǎn)生的反應(yīng),本文將進(jìn)行數(shù)據(jù)說(shuō)明。以前的水和鹽流量模型,保守地假設(shè)了鹽的行為,即水體中鹽的濃度僅僅與改變?cè)邴}水中輸入的水量所形成的不同濃度的混合體成正比(如莫蘭等人,2006年)。雖然在預(yù)測(cè)鹽的總體含量和對(duì)水管理策略的總體影響上,這是一個(gè)普遍被人接受的假設(shè),組成鹽負(fù)荷離子的許多個(gè)體離子可能參與生化反應(yīng),這可能使一些個(gè)體離子極大地改變一個(gè)

41、水體的離子組成。這一離子組成的變化可能對(duì)特別程序產(chǎn)生影響。例如,它們(鎂,鈣)是已知的二價(jià)陽(yáng)離子,在煤炭洗滌過(guò)程中能提供比一價(jià)陽(yáng)離子更大的浮選好處(奧甫里等,2005)。因此,它不僅對(duì)了解一個(gè)工地上總鹽的動(dòng)態(tài)來(lái)說(shuō)是重要的,而且對(duì)于組成不同鹽類的個(gè)體離子濃度的主要處理工序來(lái)講,同樣也是重要的。</p><p>  在工地,對(duì)于水和鹽動(dòng)態(tài)上的理解存在著困難,困難之一是不同來(lái)源的水之間難以將其區(qū)別開(kāi),因此,對(duì)鹽流量難以

42、進(jìn)行準(zhǔn)確地定性。對(duì)一些水源的輸入量,如地下水,徑流等無(wú)法計(jì)量。在這項(xiàng)工作中穩(wěn)定同位素氧18(記d18O)和氘(記dD)被用來(lái)與地球化學(xué)特征相結(jié)合起來(lái),跟蹤這些相近水源的輸入。</p><p>  圖6 坑F的地表水的陽(yáng)離子(上)和陰離子(下)在時(shí)間序列上平均濃度的變化:深水濃度比較的顯示</p><p>  圖7破壞的徑流和道路上水的陽(yáng)離子(上)和陰離子(下)</p><

43、;p><b>  徑流組成</b></p><p>  雖然對(duì)于坑點(diǎn)F,由于這是一個(gè)小的集水區(qū)域,并且由下文可知,通過(guò)這個(gè)過(guò)程能夠影響地表水離子的組成,并對(duì)此產(chǎn)生一定的貢獻(xiàn),因此,徑流破壞的投入并不是一個(gè)很大的數(shù)字。在較大的集水區(qū)域或高度活躍的破壞區(qū)域的水儲(chǔ)存地中,這個(gè)過(guò)程可能對(duì)其水質(zhì)產(chǎn)生一些更具有說(shuō)服力的影響。</p><p>  來(lái)自已破壞的徑流和道路上的降

44、雨,其組成結(jié)構(gòu)的改變?cè)趫D7中有所顯示,作為占全部離子的一定比例的總體濃度在圖8中有所顯示。降雨成分是由波樂(lè)叟、吉爾莫 (1980年)和普羅伯特(1976)所得出的。根據(jù)收集的方法和在研究過(guò)程中徑流樣品及降水(圖9)的組成,分析其成分d18O和dd中的相似點(diǎn),這很可能就可以在大致上反映出地表上面的徑流組成或者是在小道上快速流動(dòng)的,而不是由降雨得到的并且在流向坑之前就已經(jīng)滲透入地的徑流的組成??焖倭鞯缽搅骺赡苓€包括通過(guò)泥土上的裂縫或斷裂進(jìn)行

45、滲透的徑流。因此,由于雨水破壞時(shí)接觸時(shí)間較短,這些樣品中離子的組成和總徑流(表面上的滲透)在進(jìn)入坑時(shí)的這一活動(dòng)期間的組成可能大不相同。為了闡明通過(guò)破壞表面和深層徑流,并將在不同條件下由此產(chǎn)生的離子輸入、傳送到坑這一工作的相對(duì)重要性,這一工作也正在進(jìn)行。從圖7和圖8中可以明顯地看出,通過(guò)徑流得到的鹽類的數(shù)量和在溶液中的離子的相對(duì)比例存在著相當(dāng)大的變化。在坑F的徑流和降水組成中,鈣、鎂與鈉的比例和氯與硫酸的比例,其與地表水的組成成分如圖6所

46、示觀察到的變化是相一致的。在工地,破壞徑流樣品的變量可能會(huì)反映出性質(zhì)破壞的空間變化。此外,高</p><p>  圖8 決定徑流和道路水的陽(yáng)離子(上)和陰離子(下)比重</p><p>  為沖洗煤炭提供一致的水質(zhì)</p><p>  在大多數(shù)情況下,工地為了滿足不同的水質(zhì)能夠適應(yīng)這個(gè)過(guò)程。例如,在Bowen盆地的大多數(shù)煤礦已由用淡水轉(zhuǎn)向用咸水來(lái)沖洗煤。在這種情況下

47、,咸水提供的好處是通過(guò)減少試劑的使用來(lái)改善浮選(奧甫里等人,2005年)。 但是,如圖4中顯示,在相對(duì)短的時(shí)間內(nèi),水質(zhì)變化的情況下,由于在大部分的礦區(qū)沒(méi)有足夠的信息或工具來(lái)預(yù)測(cè)水質(zhì)的變化,因此適應(yīng)并不是經(jīng)常有可能的。在一個(gè)CHPP試驗(yàn)中通常能夠說(shuō)明, ROM煤礦性質(zhì)的變化是源于浮選性能的變化。通常水質(zhì)參數(shù)不怎么受到監(jiān)控,煤炭的性質(zhì)才是受到監(jiān)控的。圖11顯示了在2007/2008年雨季浮選試劑的使用變化。從中可以看出,起泡劑和收集劑的使用

48、增加時(shí),由于水較低的導(dǎo)電性使浮選程度下降。在煤的性質(zhì)發(fā)生變化的期間,影響浮選的首要因素是水質(zhì)的變化。在這些降雨事件中,操作者沒(méi)有意識(shí)到水中導(dǎo)電性的變化,因此在維持產(chǎn)量的過(guò)程中處于被動(dòng)狀態(tài)而不是主動(dòng)狀態(tài)。</p><p>  德國(guó)河為沖洗煤炭提供了相對(duì)穩(wěn)定的水質(zhì),甚至在平凡的降雨事件中,由于水管理系統(tǒng)是圍繞一個(gè)水儲(chǔ)存中心進(jìn)行管理的,因此也能提供相對(duì)穩(wěn)定的水質(zhì)。在坑F中,導(dǎo)電性的垂直剖面顯示出,在2008年2月之前的

49、降雨事件中,各個(gè)坑內(nèi)的導(dǎo)電事件不斷(圖5)。降雨事件之后,當(dāng)導(dǎo)電性在y6以下保持相對(duì)穩(wěn)定時(shí),地表水鹽度下降。因此,要將汞的攝入量降低到鹽分活躍層的深度,再把一個(gè)具有相對(duì)穩(wěn)定鹽含量的水提供給CHPP實(shí)驗(yàn)。水管理系統(tǒng)基于一系列比較小,分布較淺的大壩處的工地,這些簡(jiǎn)單的解決方案將無(wú)法使用。那是由于較淺的水體相對(duì)容易混合,并且大量降雨期間,深層水的殘留量在操作中不能提供足夠的水。為了在工地的操作過(guò)程中能夠運(yùn)用空間分布的水存儲(chǔ)系統(tǒng)知識(shí)和跨工地的水

50、質(zhì)控制程序提供一致的水質(zhì),需要考慮到與來(lái)自不同水源的水體組成的網(wǎng)狀供水系統(tǒng)設(shè)計(jì)相結(jié)合起來(lái)。對(duì)坑的性質(zhì)和相關(guān)徑流特征(包括流動(dòng)路徑和化學(xué)特征)有更好的理解是設(shè)計(jì)水管理系統(tǒng)的重要條件。</p><p><b>  總結(jié)</b></p><p>  本文提出了如下主張:水的數(shù)量和質(zhì)量的分開(kāi)管理是導(dǎo)致次優(yōu)水管理的結(jié)果。數(shù)據(jù)顯示出鹽的濃度和鹽成分(陽(yáng)離子和陰離子)的時(shí)空變化相當(dāng)

51、大。這已經(jīng)可以通過(guò)對(duì)一些物理和物理化學(xué)過(guò)程的現(xiàn)場(chǎng)觀察來(lái)做解釋。水量、水離子的組成和穩(wěn)定同位素的測(cè)量,這些已經(jīng)成為解釋工地用水行為的一部分,同時(shí)也為我們提供了改善水資源管理的一些初步想法。特別是,在一個(gè)CHPP試劑使用的變化中已經(jīng)證明,對(duì)試劑制度的變化沒(méi)有意識(shí)到時(shí),并且對(duì)此所作的決定不必負(fù)責(zé)時(shí),增加水量對(duì)其試劑的重組有重大的影響。這些都是對(duì)水資源管理進(jìn)行改變的簡(jiǎn)單證明,即去掉了水,在工地上攝入數(shù)米的深度可以避免浮選性能問(wèn)題和減少試劑的使用

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論