時間序列_第1頁
已閱讀1頁,還剩76頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、云南大學(xué)發(fā)民研究院,1,第二部分 時間序列分析,——向量自回歸(VAR)模型,云南大學(xué)發(fā)民研究院,2,內(nèi)容安排,一、向量自回歸模型定義二、VAR的穩(wěn)定性三、VAR模型滯后期k的選擇 四、VAR模型的脈沖響應(yīng)函數(shù)和方差分解 五、格蘭杰非因果性檢驗(yàn) 六、VAR與協(xié)整七、實(shí)例,云南大學(xué)發(fā)民研究院,3,1953—1997年我國gp,cp,ip,云南大學(xué)發(fā)民研究院,4,1953—1997年我國rgp,rcp,rip,云南大學(xué)發(fā)民研究

2、院,5,1953—1997年我國Lngp,Lncp,Lnip,云南大學(xué)發(fā)民研究院,6,一、向量自回歸模型定義,1980年Sims提出向量自回歸模型(vector autoregressive model)。 VAR模型是自回歸模型的聯(lián)立形式,所以稱向量自回歸模型。,云南大學(xué)發(fā)民研究院,7,產(chǎn)生的問題是什么?無法捕捉兩個變量之間的關(guān)系解決辦法:建立兩個變量之間的關(guān)系,云南大學(xué)發(fā)民研究院,8,上述方程可以用OLS估計嗎?,云南大學(xué)發(fā)民

3、研究院,9,VAR模型的特點(diǎn):,(1)不以嚴(yán)格的經(jīng)濟(jì)理論為依據(jù)。①共有哪些變量是相互有關(guān)系的,把有關(guān)系的變量包括在VAR模型中;②確定滯后期k。使模型能反映出變量間相互影響的絕大部分。(2)VAR模型對參數(shù)不施加零約束。(3)VAR模型的解釋變量中不包括任何當(dāng)期變量,所有與聯(lián)立方程模型有關(guān)的問題在VAR模型中都不存在。(4)有相當(dāng)多的參數(shù)需要估計。當(dāng)樣本容量較小時,多數(shù)參數(shù)的估計量誤差較大。(5)無約束VAR模型的應(yīng)用之一是

4、預(yù)測。(6)用VAR模型做樣本外近期預(yù)測非常準(zhǔn)確。做樣本外長期預(yù)測時,則只能預(yù)測出變動的趨勢,而對短期波動預(yù)測不理想。,云南大學(xué)發(fā)民研究院,10,估計VAR的EVIEW操作,打開工作文件,點(diǎn)擊Quick鍵, 選Estimate VAR功能。作相應(yīng)選項(xiàng)后,即可得到VAR的表格式輸出方式。在VAR模型估計結(jié)果窗口點(diǎn)擊View 選 representation功能可得到VAR的代數(shù)式輸出結(jié)果。VAR模型靜態(tài)預(yù)測的EViews操作:點(diǎn)擊Pr

5、ocs選Make Model功能。點(diǎn)擊Solve。在出現(xiàn)的對話框的Solution option(求解選擇)中選擇Static solution(靜態(tài)解)。VAR模型動態(tài)預(yù)測的EViews操作:點(diǎn)擊Procs選Make Model功能(工作文件中如果已經(jīng)有Model,則直接雙擊Model)。點(diǎn)擊Solve。在出現(xiàn)的對話框的Solution option(求解選擇)中選擇Dynamic solution(動態(tài)解)。,云南大學(xué)發(fā)民研究院,

6、11,二、VAR的穩(wěn)定性,VAR模型穩(wěn)定的充分與必要條件是Π1 的所有特征值都要在單位圓以內(nèi)(在以橫軸為實(shí)數(shù)軸,縱軸為虛數(shù)軸的坐標(biāo)體系中,以原點(diǎn)為圓心,半徑為1的圓稱為單位圓),或特征值的模都要小于1。,1、單方程情形,云南大學(xué)發(fā)民研究院,12,2、VAR 模型,Yt=?+?1Yt-1+ut為例改寫為:(I- ?1L)Yt=?+utVAR模型穩(wěn)定的條件是特征方程|?1-λI|=0的單位圓以內(nèi),特征方程|?1-λI|=0的根就是?1的

7、特征值。,,,,,,,,云南大學(xué)發(fā)民研究院,13,例:N=1,k=1時的VAR模型,= +,| I - ?1L |,云南大學(xué)發(fā)民研究院,14,3、VAR模型穩(wěn)定性的另一判別法,特征方程 的根都在單位圓以內(nèi)。特征方程的根就是П1的特征值。上述例子則有:?1 = 0.9786, ?2 = 0.2714,| ?1L -λL |=0,云南大學(xué)發(fā)民研究院,15,注意的問題,(1)

8、因?yàn)長1=1/0.978 =1/?1, L2 =1/0.27=1/?2,所以特征方程與相反的特征方程的根互為倒數(shù),L = 1/ ?。(2)在單方程模型中,通常用相反的特征方程 ?(L) = 0的根描述模型的穩(wěn)定性,即單變量過程穩(wěn)定的條件是(相反的)特征方程?(L) = 0的根都要在單位圓以外;而在VAR模型中通常用特征方程 |?1-?I|=0的根描述模型的穩(wěn)定性。VAR模型穩(wěn)定的條件是,特征方程|?1-?I|=0的根都要在單位圓以內(nèi),

9、或相反的特征方程|I–L?1|=0的根都要在單位圓以外。,云南大學(xué)發(fā)民研究院,16,4、K>1的VAR模型穩(wěn)定性,對于k>1的k階VAR模型可以通過友矩陣變換(companion form),改寫成1階分塊矩陣的VAR模型形式。然后利用其特征方程的根判別穩(wěn)定性。 給出K階VAR模型:Yt=c+?1Yt-1+?2Yt-2+…+?kYt-k+ut 配上如下等式:Yt-1=Yt-1 Yt-2=Yt-2 … Yt-k

10、+1=Yt- k+1將以上K個等式寫成分塊矩陣形式,云南大學(xué)發(fā)民研究院,17,,,云南大學(xué)發(fā)民研究院,18,VAR模型的穩(wěn)定性要求A的全部特征值,即特征方程|A-?I|=0的全部根必須在單位圓以內(nèi)或者相反的特征方程|I-LA|=0的全部根必須在單位圓以外。注意:特征方程中的A是Nk?Nk階的。特征方程中的I也是Nk?Nk階的,例:2階VAR的友矩陣變換為例,云南大學(xué)發(fā)民研究院,19,5、VAR穩(wěn)定性的EVIEW操作,求VAR模型特征

11、根的EViews操作:在VAR模型估計結(jié)果窗口點(diǎn)擊View 選 Lag Structrure, AR Roots Table 功能,即可得到VAR模型的全部特征根。若選Lag Structrure, AR Roots Graph 功能,即可得到單位圓曲線以及VAR模型全部特征根的位置圖。,云南大學(xué)發(fā)民研究院,20,6、VAR模型的穩(wěn)定性特征,穩(wěn)定性是指當(dāng)把一個脈動沖擊施加在VAR模型中某一個方程的新息(innovation)過程上時,隨

12、著時間的推移,這個沖擊會逐漸地消失。如果是不消失,則系統(tǒng)是不穩(wěn)定的。,云南大學(xué)發(fā)民研究院,21,假定模型是穩(wěn)定的,將有如下3個結(jié)論,(1)假設(shè)t = 1時,對c 施加一個單位的沖擊,那么到t期的影響是(2)假設(shè)在初始值Y0上施加一個單位的沖擊。到t期的影響是 ?1t。隨著t ??,?1t ? 0,影響消失(因?yàn)閷τ谄椒€(wěn)的VAR模型,?1中的元素小于1,所以隨著t ??,取t次方后,?1t ? 0)。,,云南大學(xué)發(fā)民研究院,22,三、

13、VAR模型滯后期k的選擇,1、用LR統(tǒng)計量選擇k值。LR(似然比)統(tǒng)計量定義為,,云南大學(xué)發(fā)民研究院,23,2、用赤池(Akaike)信息準(zhǔn)則 (AIC) 選擇k值。,3.用施瓦茨(Schwartz)準(zhǔn)則 (SC) 選擇k值。,,,云南大學(xué)發(fā)民研究院,24,例,k =1、2、3、4時的logL、Akaike AIC和Schwarz SC的值見下表。,云南大學(xué)發(fā)民研究院,25,VAR滯后期的EVIEW操作,在VAR模型估計結(jié)果窗口點(diǎn)擊Vi

14、ew 選 Lag Structrure, Lag Lengyh Criteria 功能,即可得到5個評價統(tǒng)計量的值。,云南大學(xué)發(fā)民研究院,26,四、VAR模型的脈沖響應(yīng)函數(shù)和方差分解,脈沖響應(yīng)函數(shù)描述一個內(nèi)生變量對誤差沖擊的反應(yīng)。具體地說,它描述的是在隨機(jī)誤差項(xiàng)上施加一個標(biāo)準(zhǔn)差大小的沖擊后對內(nèi)生變量的當(dāng)期值和未來值所帶來的影響。對于任何一個VAR模型都可以表示成為一個無限階的向量MA(∞)過程。具體方法是對于任何一個VAR(k)模型都

15、可以通過友矩陣變換改寫成一個VAR(1)模型,1、脈沖響應(yīng)函數(shù),云南大學(xué)發(fā)民研究院,27,云南大學(xué)發(fā)民研究院,28,對上述脈沖響應(yīng)函數(shù)的解釋存在的問題是什么?,實(shí)際中各方程對應(yīng)的誤差項(xiàng)從來都不是完全非相關(guān)的。當(dāng)誤差項(xiàng)相關(guān)時,它們有一個共同的組成部分,不能被任何特定的變量所識別。 即前述的協(xié)方差矩陣是非對角矩陣,意味著擾動項(xiàng)中的其他元素隨著第j個元素的變化而變化,這與計算脈沖響應(yīng)函數(shù)假定第j個元素的變化,而擾動項(xiàng)中的其他元素不變化相矛盾

16、.怎樣解決?,云南大學(xué)發(fā)民研究院,29,Cholesky分解,引入一個變換矩陣M與ut相乘vt=Mut?(0,?) 常用的方法就是Cholesky分解法,從而使誤差項(xiàng)正交原誤差項(xiàng)相關(guān)的部分歸于VAR系統(tǒng)中的第一個變量的隨機(jī)擾動項(xiàng)。Cholesky分解法存在的缺點(diǎn):方程順序的改變將會影響到脈沖響應(yīng)函數(shù),云南大學(xué)發(fā)民研究院,30,VAR模型殘差序列及其方差、協(xié)方差矩陣的EVIEW求法。,點(diǎn)擊VAR窗口中的Procs鍵,選Make

17、 Residuals(生成殘差)功能,工作文件中就會生成以resid01, resid02,…為編號的殘差序列(殘差序列的順序與VAR模型估計對話框中輸入的變量順序相一致),并打開殘差序列數(shù)據(jù)組窗口。在這個殘差序列數(shù)據(jù)組窗口中點(diǎn)擊View鍵,選擇Covariances功能,即可得到殘差序列的方差、協(xié)方差矩陣。選擇Correlation功能,即可得到殘差序列的相關(guān)系數(shù)矩陣。,云南大學(xué)發(fā)民研究院,31,脈沖響應(yīng)的EViews操作,點(diǎn)擊VAR

18、窗口中的Impulse鍵。在隨后彈出的對話框中做出各項(xiàng)選擇后點(diǎn)擊OK鍵,云南大學(xué)發(fā)民研究院,32,Display菜單提供下列選項(xiàng),(1) 顯示形式(Display Format) 選擇以圖或表來顯示結(jié)果。如果選擇Combined Graphs 則Response Standard Error選項(xiàng)是灰色,不顯示標(biāo)準(zhǔn)誤差。而且應(yīng)注意:輸出表的格式是按響應(yīng)變量的順序顯示,而不是按脈沖變量的順序。,(2) 顯示信息(Display

19、 Information) 輸入產(chǎn)生沖擊的變量(Impulses)和希望觀察其脈沖響應(yīng)的變量(Responses)??梢暂斎雰?nèi)生變量的名稱,也可以輸入變量的對應(yīng)的序數(shù)。,云南大學(xué)發(fā)民研究院,33,Impulse Definition菜單提供了轉(zhuǎn)換脈沖的選項(xiàng),(1) Residual-One Unit,(2) Residual-One Std.Dev(3) Cholesky分解 用殘差協(xié)方差矩陣的Cholesky因

20、子的逆來正交化脈沖。,(4) 廣義脈沖(Gneralized Impluses),(5) 結(jié)構(gòu)分解(Structural Decomposition) 用結(jié)構(gòu)因子分解矩陣估計的正交轉(zhuǎn)換矩陣。,(6) 用戶指定(User Specified),云南大學(xué)發(fā)民研究院,34,2、方差分解,分析未來t+s期的yj,t+s的預(yù)測誤差的方差由不同新息的沖擊影響的比例。假設(shè)下式是由任一VAR(k) 模型轉(zhuǎn)換而得到的關(guān)于Y

21、t的一階向量自回歸模型。,云南大學(xué)發(fā)民研究院,35,方差分解的EViews操作,從VAR的工具欄中選View/Variance decomposition項(xiàng)。注意,因?yàn)榉钦坏囊蜃臃纸馑a(chǎn)生的分解不具有較好的性質(zhì),所以所選的因子分解僅限于正交的因子分解。,云南大學(xué)發(fā)民研究院,36,五、格蘭杰非因果性檢驗(yàn),VAR模型還可用來檢驗(yàn)一個變量與另一個變量是否存在因果關(guān)系。經(jīng)濟(jì)計量學(xué)中格蘭杰(Granger)非因果性定義如下:格蘭杰非因果性:如

22、果由yt和xt滯后值所決定的yt的條件分布與僅由yt滯后值所決定的條件分布相同,即?(yt?yt-1,…,xt-1,…)=?(yt?yt-1,…)則稱xt-1對yt存在格蘭杰非因果性。 格蘭杰非因果性的另一種表述是其它條件不變,若加上xt的滯后變量后對yt的預(yù)測精度不存在顯著性改善,則稱xt-1對yt存在格蘭杰非因果性關(guān)系。,云南大學(xué)發(fā)民研究院,37,VAR 模型中以yt為被解釋變量的方程表示如下:檢驗(yàn)xt對yt存在格蘭杰非因

23、果性的零假設(shè)是H0:?1=?2=…=?k=0 上述檢驗(yàn)用F統(tǒng)計量來完成用樣本計算的F值如果落在臨界值以內(nèi),接受原假設(shè),即xt 對yt不存在格蘭杰因果關(guān)系。,,,云南大學(xué)發(fā)民研究院,38,Grange因果性檢驗(yàn)EViews操作方法,打開數(shù)劇組窗口,點(diǎn)View鍵,選Granger Causility。在打開的對話窗口中填上滯后期,點(diǎn)擊OK鍵。,云南大學(xué)發(fā)民研究院,39,輸出結(jié)果對于VAR模型中的每一個方程,將輸出每一個其他內(nèi)生變

24、量的滯后項(xiàng)(不包括它本身的滯后項(xiàng))聯(lián)合顯著的?2(Wald)統(tǒng)計量,在表的最后一行(ALL)列出了檢驗(yàn)所有滯后內(nèi)生變量聯(lián)合顯著的?2統(tǒng)計量。對例進(jìn)行檢驗(yàn),其結(jié)果如下:,云南大學(xué)發(fā)民研究院,40,注意的問題:,(1)滯后期k的選取是任意的,實(shí)質(zhì)上是一個判斷性問題。一般來說要試檢驗(yàn)若干個不同滯后期k的格蘭杰因果關(guān)系檢驗(yàn),且結(jié)論相同時,才可以最終下結(jié)論。(2)當(dāng)做xt是否為導(dǎo)致yt變化的格蘭杰原因檢驗(yàn)時,如果zt也是yt變化的格蘭杰原因,且

25、zt又與xt相關(guān),這時在xt是否為導(dǎo)致yt變化的格蘭杰因果關(guān)系檢驗(yàn)式的右端應(yīng)加入zt的滯后項(xiàng)(實(shí)際上是3個變量VAR模型中的一個方程)。(3)不存在協(xié)整關(guān)系的非平穩(wěn)變量之間不能進(jìn)行格蘭杰因果關(guān)系檢驗(yàn),云南大學(xué)發(fā)民研究院,41,六、VAR與協(xié)整,如果VAR模型Yt=?1Yt-1+?2Yt-1+…+?kYt-k+ut,ut?IID (0, ?)的內(nèi)生變量都含有單位根,那么可以用這些變量的一階差分序列建立一個平穩(wěn)的VAR模型。 ?Yt

26、= ?1*?Yt-1+?2*?Yt-2+…+?k*?Yt-k+ut* 如果Yt?I(1),且非平穩(wěn)變量間存在協(xié)整關(guān)系。差分方程存在的問題是什么?丟失重要的非均衡誤差信息,云南大學(xué)發(fā)民研究院,42,1、VEC的推導(dǎo),對于k=1的VAR模型,Yt=?1Yt-1+ut,兩側(cè)同減Yt-1,得?Yt=(?1–I)Yt-1+ut對于k=2的VAR模型,Yt= ?1Yt-1+?2Yt-2+ut,兩側(cè)同減Yt-1,在右側(cè)加、減 ?2Yt-1,

27、并整理得?Yt=(?1+?2-I)Yt-1-?2 ?Yt-1+ut對于k=3的VAR模型,Yt=?1Yt-1+?2Yt-2+?3Yt-3+ut,兩側(cè)同減Yt-1,在右側(cè)加、減?2Yt-1和?3 Yt-1并整理得?Yt=(?1+?2+?3-I)Yt-1-?2Yt-1-?3Yt-1+?2Yt-2+?3Yt-3+ut =(?1+?2+?3-I)Yt-1–?2 ?Yt-1-?3Yt-1 +?3 Yt-3+ut 在右側(cè)加、減?3Yt

28、-2并整理得 ?Yt =(?1+?2+?3-I)Yt-1–(?2+?3)?Yt-1-?3?Yt-2+ut,云南大學(xué)發(fā)民研究院,43,對于k階VAR模型,Yt=?1Yt-1+?2Yt-2+…+?kYt-k+ut,利用k=1, 2, 3的VAR模型的推導(dǎo)規(guī)律,其向量誤差修正模型(VEC)的表達(dá)式是?Yt=(?1+?2+…+?k-I)Yt-1-(?2+?3+…+?k) ?Yt-1-(?3+…+?k)?Yt-2-…-?k?Yt-(k-1

29、)+ut,云南大學(xué)發(fā)民研究院,44,由于I(1)過程經(jīng)過差分變換將變成I(0)過程,即式中的ΔytΔyt–j(j=1,2,…,p) 都是I(0)變量構(gòu)成的向量,那么只要 ? yt-1 是I(0)的向量,即y1t-1y2,t-1…,ykt-1 之間具有協(xié)整關(guān)系,就能保證Δyt是平穩(wěn)過程。變量y1,t-1,y2,t-1,…,yk,t-1 之間是否具有協(xié)整關(guān)系主要依賴于矩陣 ?的秩。若Yt ? CI(1, 1) ,則? = ? ?’其中?

30、是協(xié)整矩陣,? 是調(diào)整系數(shù)矩陣。? 和? 都是N?r階矩陣。表示有r個協(xié)整向量,?1, ?2 … , ?r,存在r個協(xié)整關(guān)系。因?yàn)閅t?I(1),所以 ?Yt ? I(0)。,云南大學(xué)發(fā)民研究院,45,對于?Yt-k有如下三種可能:,當(dāng)Yt的分量不存在協(xié)整關(guān)系,?的特征根為零,?=0。(即r=0)若rank(?)=N(滿秩),保證?Yt-k平穩(wěn)的唯一一種可能是Yt ? I(0)。(r=N)當(dāng)Yt?I(1),若保證?Yt-k平穩(wěn),只有

31、一種可能,即Yt的分量存在協(xié)整關(guān)系。(0<r<N) ?'Yt?I(0),云南大學(xué)發(fā)民研究院,46,例 k=0的VEC模型,,云南大學(xué)發(fā)民研究院,47,rank(?)=0時,任意形式的? 通過適當(dāng)線性變換,可以得到 ? = 0。 ?Yt = ut 說明Yt中含有一個單位根。VAR模型中沒有協(xié)整向量。,云南大學(xué)發(fā)民研究院,48,例:設(shè)三個變量的k = 1的VEC,云南大學(xué)發(fā)民研究院,49,2、VAR

32、模型中協(xié)整向量的估計,給定VAR模型,云南大學(xué)發(fā)民研究院,50,將?的分解表達(dá)式代入到上式有,上式要求 ?? yt-1 為一個 I(0) 向量,其每一行都是 I(0) 組合變量,即 ? 的每一行所表示的 y1,t-1,y2,t-1,…,yk,t-1 的線性組合都是一種協(xié)整形式,所以矩陣 ? 決定了 y1,t-1,y2,t-1,…,yk,t-1 之間協(xié)整向量的個數(shù)與形式。因此稱為協(xié)整向量矩陣,r 為協(xié)整向量的個數(shù)。,云南大學(xué)發(fā)民研究院,5

33、1,3、Johnson檢驗(yàn)的基本原理,將yt的協(xié)整檢驗(yàn)變成對矩陣?的分析問題矩陣 ? 的秩等于它的非零特征根的個數(shù)設(shè)矩陣? 的特征根為?1??2?…??k相應(yīng)的檢驗(yàn)統(tǒng)計量為,1)特征根跡檢驗(yàn)(trace檢驗(yàn))(本部分推導(dǎo)可參見張曉峒,《計量經(jīng)濟(jì)分析》,第八章),云南大學(xué)發(fā)民研究院,52,檢驗(yàn)方法,(1)當(dāng) ?0 不顯著時(?0Johansen分布臨界值),拒絕H00 ,則表明至少有一個協(xié)整向量,必須接著檢驗(yàn) ?1 的顯著

34、性。(2)當(dāng) ?1 不顯著時,接受H10,表明只有1個協(xié)整向量,依次進(jìn)行下去,直到接受 Hr0,說明存在 r 個協(xié)整向量。這 r 個協(xié)整向量就是對應(yīng)于最大的 r 個特征根的經(jīng)過正規(guī)化的特征向量。,云南大學(xué)發(fā)民研究院,53,根據(jù)右邊假設(shè)檢驗(yàn),大于臨界值拒絕原假設(shè)。繼續(xù)檢驗(yàn)的過程可歸納為如下的序貫過程:?1臨界值,拒絕H10,表明至少有2個協(xié)整向量; ┇?r<臨界值,接受Hr0,表明只有 r 個協(xié)整向量。,云南

35、大學(xué)發(fā)民研究院,54,2)最大特征值檢驗(yàn),對于Johansen協(xié)整檢驗(yàn),另外一個類似的檢驗(yàn)方法是,,,檢驗(yàn)統(tǒng)計量是基于最大特征值的,其形式為,,,(9.6.7),其中 ?r 稱為最大特征根統(tǒng)計量,簡記為?-max統(tǒng)計量。,云南大學(xué)發(fā)民研究院,55,檢驗(yàn)從下往上進(jìn)行,首先檢驗(yàn)?0 ,如果 ?0臨界值,拒絕H00 ,至少有1個協(xié)整向量。 接受H00 (r = 0),表明最大特征根為0,無協(xié)整向量,否則接受H01,至少有1個協(xié)整向量

36、;如果 ?1 顯著,拒絕H10,接受至少有2個協(xié)整向量的備擇假設(shè)H11;依次進(jìn)行下去,直到接受Hr0,共有 r 個協(xié)整向量。,云南大學(xué)發(fā)民研究院,56,4、協(xié)整方程的形式,(1) VAR模型 沒有確定趨勢,協(xié)整方程沒有截距: (2) VAR模型沒有確定趨勢,協(xié)整方程有截距項(xiàng) ? 0:,,,云南大學(xué)發(fā)民研究院,57,,(3) VAR模型有確定性線性趨勢,但協(xié)整方程只有截距:,,,(4) VAR模型和協(xié)整方程都有線性趨勢,協(xié)整

37、方程的線性趨勢表示為 ? 1t :,,(5) VAR模型有二次趨勢,協(xié)整方程僅有線性趨勢:,云南大學(xué)發(fā)民研究院,58,5、協(xié)整檢驗(yàn)的EVIEWS操作,從VAR對象或Group(組)對象的工具欄中選擇View/Cointegration Test… 即可。協(xié)整檢驗(yàn)僅對已知非平穩(wěn)的序列有效,所以需要首先對VAR模型中每一個序列進(jìn)行單位根檢驗(yàn)。EViews軟件中協(xié)整檢驗(yàn)實(shí)現(xiàn)的理論基礎(chǔ)是Johansen (1991, 1995a)協(xié)整理論。在C

38、ointegration Test Specification的對話框中將提供關(guān)于檢驗(yàn)的詳細(xì)信息:,云南大學(xué)發(fā)民研究院,59,1) 協(xié)整檢驗(yàn)的設(shè)定,云南大學(xué)發(fā)民研究院,60,2)協(xié)整檢驗(yàn)結(jié)果的解釋,協(xié)整關(guān)系的數(shù)量輸出結(jié)果的第一部分給出了協(xié)整關(guān)系的數(shù)量,并以兩種檢驗(yàn)統(tǒng)計量的形式顯示:第一種檢驗(yàn)結(jié)果是所謂的跡統(tǒng)計量,列在第一個表格中;第二種檢驗(yàn)結(jié)果是最大特征值統(tǒng)計量,列在第二個表格中。第一列顯示了在原假設(shè)成立條件下的協(xié)整關(guān)系數(shù);第

39、二列是? 矩陣按由大到小排序的特征值;第三列是跡檢驗(yàn)統(tǒng)計量或最大特征值統(tǒng)計量;第四列是在5%顯著性水平下的臨界值;最后一列是根據(jù)MacKinnon-Haug-Michelis (1999) 提出的臨界值所得到的P值。,云南大學(xué)發(fā)民研究院,61,協(xié)整關(guān)系,輸出的第二部分給出協(xié)整關(guān)系 ? 和調(diào)整參數(shù) ? 的估計。如果不強(qiáng)加一些任意的正規(guī)化條件,協(xié)整向量 ? 是不可識別的。在第一塊中報告了基于正規(guī)化約束條件 ? ?S11 ? =

40、I(其中S11在Johansen(1995a)中作出了定義)的 ? 和 ? 的估計結(jié)果。注意:在Unrestricted Cointegrating Coefficients下 ? 的輸出結(jié)果:第一行是第一個協(xié)整向量,第二行是第二個協(xié)整向量,以此類推。其余的部分是在每一個可能的協(xié)整關(guān)系數(shù)下(r = 0,1,…,k-1)正規(guī)化后的估計輸出結(jié)果。一個可選擇的正規(guī)化方法是:在系統(tǒng)中,前 r 個變量作為其余 k ? r 個變量的函數(shù)。近似的標(biāo)

41、準(zhǔn)誤差在可識別參數(shù)的圓括號內(nèi)輸出。,云南大學(xué)發(fā)民研究院,62,6、VEC模型在EViews軟件,VEC模型的表達(dá)式僅僅適用于協(xié)整序列先運(yùn)行Johansen協(xié)整檢驗(yàn)確定協(xié)整關(guān)系數(shù)在VAR對象設(shè)定框中,從VAR Type中選擇Vector Error Correction項(xiàng)。在VAR Specification欄中,除了特殊情況外,應(yīng)該提供與無約束的VAR模型相同的信息:,云南大學(xué)發(fā)民研究院,63,① 常數(shù)或線性趨勢項(xiàng)不應(yīng)包括在Exo

42、genous Series的編輯框中。對于VEC模型的常數(shù)和趨勢說明應(yīng)定義在Cointegration欄中。 ② 在VEC模型中滯后間隔的說明指一階差分的滯后。例如,滯后說明“1 1”將包括VEC模型右側(cè)的變量的一階差分項(xiàng)的滯后,即VEC模型是兩階滯后約束的VAR模型 。為了估計沒有一階差分項(xiàng)的VEC模型,指定滯后的形式為:“0 0”。,云南大學(xué)發(fā)民研究院,64,③ 對VEC模型常數(shù)和趨勢的說明在Cointegration欄。必須從5

43、個趨勢假設(shè)說明中選擇一個,也必須在適當(dāng)?shù)木庉嬁蛑刑钊雲(yún)f(xié)整關(guān)系的個數(shù),應(yīng)該是一個小于VEC模型中內(nèi)生變量個數(shù)的正數(shù)。,云南大學(xué)發(fā)民研究院,65,填完這個對話框,單擊OK按紐即可估計VEC模型。VEC模型的估計分兩步完成: 第一步,從Johansen所用的協(xié)整檢驗(yàn)估計協(xié)整關(guān)系; 第二步,用所估計的協(xié)整關(guān)系構(gòu)造誤差修正項(xiàng),并估計包括誤差修正項(xiàng)作為回歸量的一階差分形式的VAR模型。,云南大學(xué)發(fā)民研究院,66,VEC模型估計的輸出包括兩部分。

44、第一部分顯示了第一步從Johansen過程所得到的結(jié)果。如果不強(qiáng)加約束,EViews將會用系統(tǒng)默認(rèn)的能可以識別所有的協(xié)整關(guān)系的正規(guī)化方法。系統(tǒng)默認(rèn)的正規(guī)化表述為:將VEC模型中前 r 個變量作為剩余 k? r 個變量的函數(shù),其中 r 表示協(xié)整關(guān)系數(shù),k 是VEC模型中內(nèi)生變量的個數(shù)。第二部分輸出是在第一步之后以誤差修正項(xiàng)作為回歸量的一階差分的VAR模型。誤差修正項(xiàng)以CointEq1,CointEq2,……表示形式輸出。輸出形式與無約

45、束的VAR輸出形式相同,將不再贅述。,云南大學(xué)發(fā)民研究院,67,七、實(shí)例,中國GDP、宏觀消費(fèi)與基本建設(shè)投資的VEC模型分析 1.建立VAR模型對任何一組有關(guān)系的經(jīng)濟(jì)變量都可以直接建立VAR模型。最大滯后期k的選擇可以依據(jù)LR檢驗(yàn)、赤池準(zhǔn)則、Schwartz準(zhǔn)則。建立VAR模型的EViews步驟是(1)點(diǎn)擊Quick鍵,選Estimate VAR功能,得如下對話框:,云南大學(xué)發(fā)民研究院,68,云南大學(xué)發(fā)民研究院,69,,,云南大學(xué)

46、發(fā)民研究院,70,2.檢驗(yàn)變量間是否存在協(xié)整關(guān)系。,從工作文件中選中變量,打開數(shù)據(jù)組窗口,點(diǎn)擊View鍵,選Cointegration Test功能,得如下對話框:,云南大學(xué)發(fā)民研究院,71,云南大學(xué)發(fā)民研究院,72,3、建立VEC模型,EViews命令是點(diǎn)擊Quick鍵,選Estimate VAR功能,得如下對話框:在VAR設(shè)定(VAR Specification)對話框中點(diǎn)擊VEC估計(Vector Error Correction

47、),如下圖,,云南大學(xué)發(fā)民研究院,73,云南大學(xué)發(fā)民研究院,74,點(diǎn)擊OK,得如下對話框:其中協(xié)整式(Cointegration equation)中的選擇應(yīng)該與前述協(xié)整檢驗(yàn)中的選擇保持一致。點(diǎn)擊OK,,云南大學(xué)發(fā)民研究院,75,,云南大學(xué)發(fā)民研究院,76,問題:(1)若對協(xié)整式(Cointegration equation)中的選擇前后不一致可以否?要慎重。(2)寫VEC表達(dá)式。(3)解釋經(jīng)濟(jì)意義。,云南大學(xué)發(fā)民研究院,77,參

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論