2018考研數(shù)學二大綱_第1頁
已閱讀1頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2018年考研數(shù)學二考試大綱原文考試科目:高等數(shù)學、線性代數(shù)考試形式和試卷結構一、試卷滿分及考試時間試卷滿分為150分,考試時間為180分鐘二、答題方式答題方式為閉卷、筆試三、試卷內容結構高等教學約78%線性代數(shù)約22%四、試卷題型結構單項選擇題8小題,每小題4分,共32分填空題6小題,每小題4分,共24分解答題(包括證明題)9小題,共94分高等數(shù)學一、函數(shù)、極限、連續(xù)考試內容函數(shù)的概念及表示法函數(shù)的有界性、單調性、周期性和奇偶性復合函

2、數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù)基本初等函數(shù)的性質及其圖形初等函數(shù)函數(shù)關系的建立數(shù)列極限與函數(shù)極限的定義及其性質函數(shù)的左極限與右極限無窮小量和無窮大量的概念及其關系無窮小量的性質及無窮小量的比較極限的四則運算極限存在的兩個準則:單調有界準則和夾逼準則兩個重要極導數(shù)和微分的概念導數(shù)的幾何意義和物理意義函數(shù)的可導性與連續(xù)性之間的關系平面曲線的切線和法線導數(shù)和微分的四則運算基本初等函數(shù)的導數(shù)復合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法

3、高階導數(shù)一階微分形式的不變性微分中值定理洛必達(LHospital)法則函數(shù)單調性的判別函數(shù)的極值函數(shù)圖形的凹凸性、拐點及漸近線函數(shù)圖形的描繪函數(shù)的最大值與最小值弧微分曲率的概念曲率圓與曲率半徑考試要求1、理解導數(shù)和微分的概念,理解導數(shù)與微分的關系,理解導數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導數(shù)的物理意義,會用導數(shù)描述一些物理量,理解函數(shù)的可導性與連續(xù)性之間的關系2、掌握導數(shù)的四則運算法則和復合函數(shù)的求導法則,掌握基本初

4、等函數(shù)的導數(shù)公式.了解微分的四則運算法則和一階微分形式的不變性,會求函數(shù)的微分3、了解高階導數(shù)的概念,會求簡單函數(shù)的高階導數(shù)4、會求分段函數(shù)的導數(shù),會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導數(shù)5、理解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Tayl)定理,了解并會用柯西(Cauchy)中值定理6、掌握用洛必達法則求未定式極限的方法7、理解函數(shù)的極值概念,掌握用導數(shù)判斷函數(shù)的單調性和求函數(shù)極值的方法

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論