2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

1、1.1.1 算法的概念,一人帶著一只狼、一只羊和一箱蔬菜要過河,但只有一條小船.乘船時,每次只能帶狼、羊和蔬菜中的一種.當有人在場時,狼、羊、蔬菜都相安無事.一旦人不在,狼會吃羊,羊會吃菜.請設計一個方案,安全地將狼、羊和蔬菜帶過河.,,趣味益智游戲,如何發(fā)電子郵件?,假如你的朋友不會發(fā)電子郵件,你能教會他么?發(fā)郵件的方法很多,下面就是其中一種的操作步驟:,第一步 登陸電子信箱第二步 點擊“寫信”第三步 輸入收件人地址

2、第四步 輸入主題第五步 輸入信件內(nèi)容第六步 點擊“發(fā)送”,一般地,對于一類問題的機械式地、統(tǒng)一地、按部就班地求解過程稱為算法(algorithm)它是解決某一問題的程序或步驟.,按照這樣的理解,我們可以設計出很多具體數(shù)學問題的算法.下面看幾個例子:,所謂 “算法”就是解題方法的精確描述.從更廣義的角度來看,并不是只有“計算”的問題才有算法,日常生活中處處都有.如樂譜是樂隊演奏的算法,菜譜是做菜肴的算法,珠算口訣

3、是使用算盤的算法.,第二步 解③得,第三步 ② -① ×2得 5y=3; ④,第四步 解④得,做一做,你能寫出解一般的二元一次方程組的步驟嗎?,,,第一步,,第二步,解(3)得,思考,,,第四步,解(4)得,第三步,,第五步,得到方程組的解為,,上述步驟構(gòu)成了解二元一次方程組的一個算法,我們可以進一步根據(jù)這一算法編制計算機程序,讓計算機來解二元一次方程組.,練習1. 給出求1+2+3

4、+4+5+6的一個算法.,解法1.按照逐一相加的程序進行.,第一步:計算1+2,得3;,第二步:將第一步中的運算結(jié)果3與3相加得6;,第三步:將第二步中的運算結(jié)果6與4相加得10;,第四步:將第三步中的運算結(jié)果10與5相加得15;,第五步:將第四步中的運算結(jié)果15與6相加得21.,解法2.可以運用下面公式直接計算.,第一步,取 n =6;,第二步,計算 ;,第三步,輸出計算結(jié)果.,點評:解法1繁瑣,步驟較多; 解法2簡單,步

5、驟較少. 找出好的算法是我們的追求目標.,,現(xiàn)在你對算法有了新的認識了嗎?,,在數(shù)學中,算法通常是指按照一定規(guī)則解決某一類問題的明確和有限的步驟.現(xiàn)在,算法通常可以編成計算機程序,讓計算機執(zhí)行并解決問題.,2.算法的要求,(1)寫出的算法,必須能解決一類問題(例如解任意一個二元一次方程組),并且能重復使用;,(2) 算法過程要能一步一步執(zhí)行,每一步執(zhí)行的操作,必須確切,不能含混不清,而且在有限步之內(nèi)完成后能得出結(jié)果.,1.算法的定義,3

6、.算法的基本特征:,明確性:算法對每一個步驟都有確切的、非二義性的規(guī)定,即每一步對于利用算法解決問題的人或計算機來說都是可讀的、可執(zhí)行的,而不需要計算者臨時動腦筋.,有效性:算法的每一個步驟都能夠通過基本運算有效地進行,并得到確定的結(jié)果;對于相同的輸入,無論誰執(zhí)行算法,都能夠得到相同的最終結(jié)果.,有限性:算法應由有限步組成,至少對某些輸入,算法應在有限多步內(nèi)結(jié)束,并給出計算結(jié)果.,例1:(1)設計一個算法判斷7是否為質(zhì)數(shù).,第一步

7、 用2除7,得到余數(shù)1.因為余數(shù)不為0, 所以2不能整除7.,第二步 用3除7,得到余數(shù)1.因為余數(shù)不為0, 所以3不能整除7.,第三步 用4除7,得到余數(shù)3.因為余數(shù)不為0, 所以4不能整除7.,第四步 用5除7,得到余數(shù)2.因為余數(shù)不為0, 所以5不能整除7.,第五步 用6除7,得

8、到余數(shù)1.因為余數(shù)不為0, 所以6不能整除7.因此,7是質(zhì)數(shù).,例1:(2)設計一個算法判斷35是否為質(zhì)數(shù).,第一步, 用2除35,得到余數(shù)1.因為余數(shù)不為0, 所以2不能整除35.,第二步, 用3除35,得到余數(shù)2.因為余數(shù)不為0, 所以3不能整除35.,第三步, 用4除35,得到余數(shù)3.因為余數(shù)不為0,

9、 所以4不能整除35.,第四步, 用5除35,得到余數(shù)0.因為余數(shù)為0, 所以5能整除35.因此,35不是質(zhì)數(shù).,變式: “判斷53是否質(zhì)數(shù)”的算法如下:第1步,用2除53得余數(shù)為1,余數(shù)不為0,所以2不能整除53;第2步,用3除53得余數(shù)為2,余數(shù)不為0,所以3不能整除53;……第52步,用52除53得余數(shù)為1,余數(shù)不為0,故52不能整除53;所以53是質(zhì)數(shù).,上述算法正確嗎?

10、請說明理由.,②算法要“面面俱到”,不能省略任何一個細小的步驟,只有這樣,才能在人設計出算法后,把具體的執(zhí)行過程交給計算機完成.,①設計一個具體問題的算法時,與過去熟悉地解數(shù)學題的過程有直接的聯(lián)系,但這個過程必須被分解成若干個明確的步驟,而且這些步驟必須是有效的.,判斷“整數(shù)n(n>2)是否是質(zhì)數(shù)”的算法,自然語言描述,第一步 給定大于2的整數(shù)n.,第二步 令i=2.,第三步 用i除n,得到余數(shù)r.,第四步 判斷“r=

11、0”是否成立.若是,則n不是質(zhì) 數(shù),結(jié)束算法;否則將i的值增加1,仍用i表示.,第五步 判斷“i>(n-1)”是否成立.若是,則n是質(zhì)數(shù),結(jié)束算法;否則返回第三步.,例2:用二分法設計一個求方程 近似根的算法,二分法,對于區(qū)間[a,b ]上連續(xù)不斷、且f(a)f(b)<0的函數(shù)y=f(x),通過不斷地把函數(shù)f(x)的零點所在的區(qū)間一分為二,使區(qū)間的兩個端點逐步逼近零點,進而得到零點或其

12、近似值的方法叫做二分法.,第四步, 若f(a) ·f(m) < 0,則含零點的區(qū)間為[a,m];,第二步, 給定區(qū)間[a,b],滿足f(a) ·f(b)<0.,第三步, 取中間點    .,第五步,判斷f(m)是否等于0或者[a,b]的長度是否小于d,若是,則m是方程的近似解;否則,返回第三步.,將新得到的含零點的仍然記為[a,b].,否則,含零點的區(qū)間為[m, b].,算法步驟:第一步, 令

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論