2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩66頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、高通量基因測序技術(shù)是第二代基因測序的主要技術(shù),得到許多研究機(jī)構(gòu)的廣泛關(guān)注。該技術(shù)是將含有堿基信息的熒光點(diǎn)組成原始待測序圖像,經(jīng)過堿基識別操作得到所測基因序列。因?yàn)樵紵晒鈭D像信噪比低等原因,影響堿基識別的準(zhǔn)確度,因此需要圖像去噪等預(yù)處理操作。在過去的幾十年中,針對測序圖像的去噪算法已經(jīng)取得了極大的發(fā)展。由于待測序圖像具有紋理密度多樣性和噪聲多樣性的特點(diǎn),小波閾值收縮去噪算法在解決測序圖像去噪問題上具有較好的性能。本文提出了兩種基于小波閾

2、值改進(jìn)算法模型用于待測序圖像去噪問題。
  基于閾值的小波收縮去噪算法主要由兩類組成:基于全局閾值小波收縮去噪方法和基于局部閾值的小波收縮去噪方法。本文提出的第一種算法是基于à trous小波的改進(jìn)閾值算法。首先將含噪聲圖像小波分解為多個(gè)高頻分量和一個(gè)低頻分量,然后使用1范數(shù)構(gòu)造每一層小波系數(shù)對應(yīng)的全局閾值表達(dá)式,并根據(jù)每一層小波系數(shù)與閾值提出了估計(jì)小波系數(shù)表達(dá)式。最后進(jìn)行小波逆變換,得到降噪后的圖像。本文提出的第二種小波閾值去噪

3、算法主要是使用離散小波變換,對BiShrink閾值算法進(jìn)行改進(jìn)。傳統(tǒng)的BiShrink算法在計(jì)算估計(jì)小波系數(shù)時(shí)考慮當(dāng)前系數(shù)、父子系數(shù)之間的相關(guān)性,但是該方法沒有考慮信號的分布特性,造成重構(gòu)圖像模糊。而本文提出的算法是在含有高斯噪聲的數(shù)據(jù)庫中,在每個(gè)小波系數(shù)的鄰域內(nèi)選擇部分小波系數(shù)來計(jì)算局部閾值,并使用拉普拉斯模型改進(jìn)估計(jì)小波系數(shù)表達(dá)式,使得解決待測序圖像的去噪算法更具有魯邦性。
  本文提出的兩種算法模型都在Swift和人工仿真的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論