版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、電力系統(tǒng)的短期負(fù)荷預(yù)測對于電力系統(tǒng)的經(jīng)濟穩(wěn)定運行具有重要作用。準(zhǔn)確的預(yù)測結(jié)果能夠幫助制定發(fā)電計劃、穩(wěn)定性分析以及電力系統(tǒng)的運行和優(yōu)化決策。隨著系統(tǒng)解除管制,短期負(fù)荷預(yù)測能為電能生產(chǎn)和電力交易提供決策支持,因而越來越重要。
人工神經(jīng)網(wǎng)絡(luò)能夠充分描述電力負(fù)荷的復(fù)雜特性。Ensemble方法能能夠有效提高單個預(yù)測器的預(yù)測效果。為建立良好的Ensemble模型,需要產(chǎn)生多個具有多樣性和準(zhǔn)確性的子預(yù)測器,并將它們組合成為一個復(fù)合的預(yù)測器
2、。本文提出一種非全連接神經(jīng)網(wǎng)絡(luò)的Ensemble模型用于電力系統(tǒng)的短期負(fù)荷預(yù)測。非全連接神經(jīng)網(wǎng)絡(luò)由于其良好的泛化能力而被用作基本預(yù)測器?;诜秩旱幕煦缢惴ɡ眠z傳進(jìn)化的群特性產(chǎn)生多樣的、準(zhǔn)確的神經(jīng)網(wǎng)絡(luò)。本文采用新型的剪枝算法以確定性的方式產(chǎn)生非全連接神經(jīng)網(wǎng)絡(luò)。為進(jìn)一步提高預(yù)測的準(zhǔn)確度,本文提出基于ANN的非線性Ensemble用以組合全連接神經(jīng)網(wǎng)絡(luò),并將本文提出的短期負(fù)荷預(yù)測方法應(yīng)用到PJM數(shù)據(jù)集和ISO New England數(shù)據(jù)集上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 帶置信區(qū)間的短期電價預(yù)測方法.pdf
- 抽樣與置信區(qū)間估計
- 置信區(qū)間與假設(shè)檢驗
- 線性模型中誤差密度的經(jīng)驗似然置信區(qū)間.pdf
- 基于Bootstrap技術(shù)的Web服務(wù)QoS置信區(qū)間研究.pdf
- 多維二項分布參數(shù)的同時置信區(qū)間.pdf
- 概率論與數(shù)理統(tǒng)計 7.3置信區(qū)間
- 兩正態(tài)總體方差比的優(yōu)化置信區(qū)間問題.pdf
- 數(shù)據(jù)缺失時反映變量均值的經(jīng)驗似然置信區(qū)間.pdf
- 04 第四節(jié) 正態(tài)總體的置信區(qū)間
- 配對設(shè)計率差及率比置信區(qū)間構(gòu)建新方法.pdf
- 指數(shù)型分布族中矩估計的序貫置信區(qū)間.pdf
- 幾類指數(shù)分布族參數(shù)的優(yōu)化檢驗和置信區(qū)間研究.pdf
- 基于ψ調(diào)整的含單個分類協(xié)變量的率差置信區(qū)間估計新方法.pdf
- 20550.基于多組樣本和順序統(tǒng)計量的威布爾分布參數(shù)置信區(qū)間的估計
- 13851.多個雙參數(shù)指數(shù)分布下均值差的同時置信區(qū)間
- 相依樣本下一類統(tǒng)計泛函的經(jīng)驗似然置信區(qū)間.pdf
- 兩樣本率均為100%的率差置信區(qū)間估計方法的模擬比較研究.pdf
- 相關(guān)系數(shù)置信區(qū)間及其在機器人主動嗅覺過程中的應(yīng)用.pdf
- 11120.相依樣本下含附加信息時概率密度函數(shù)的經(jīng)驗似然置信區(qū)間
評論
0/150
提交評論