版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、近幾十年來,示教學(xué)習(xí)一直是機器人研究領(lǐng)域中極富挑戰(zhàn)性的研究課題之一。在示教學(xué)習(xí)中,直接估計狀態(tài)-動作映射往往無法考慮長期性影響。因此,研究者傾向于將示教學(xué)習(xí)過程分為估計環(huán)境參數(shù)和求解最優(yōu)控制器兩個步驟,間接地逼近示教策略。在若干環(huán)境參數(shù)表達方法中,回報函數(shù)具有泛化能力強、遷移性好和所需調(diào)節(jié)參數(shù)少等優(yōu)點。目前,基于回報函數(shù)估計的示教學(xué)習(xí)正成為示教學(xué)習(xí)中應(yīng)用最廣泛的方法之一。回報函數(shù)的估計,又稱為逆向增強學(xué)習(xí),是指給定智能體行為、狀態(tài)和環(huán)境
2、動態(tài)模型,在馬爾可夫決策過程模型中求解回報函數(shù)的問題。但是,基于回報函數(shù)估計的示教學(xué)習(xí)當(dāng)前還存在幾個需要解決的問題:(1)回報函數(shù)的估計過程無法序貫進行。(2)回報函數(shù)的學(xué)習(xí)結(jié)果只能提供點估計信息。(3)回報函數(shù)估計的性能對示教噪聲敏感。針對上述問題,本文嘗試在序貫估計和貝葉斯框架下對逆向增強學(xué)習(xí)問題進行了理論研究。
首先,本文從最大邊際原則和約束一致性原則兩個方面研究了序貫化逆向增強學(xué)習(xí)算法,從而為逆向增強學(xué)習(xí)的序貫算法
3、研究提供了理論支持?;谧畲筮呺H原則,本文提出了增量式逆向增強學(xué)習(xí)方法。該方法將學(xué)習(xí)建模為二項分類問題,然后通過擬可加序貫學(xué)習(xí)框架的思想進行回報函數(shù)的序貫重估計。算法以序列化的方式處理依次到來的觀察數(shù)據(jù)?;诩s束一致性原則,本文提出了松弛投影逆向增強學(xué)習(xí)方法。本方法將回報函數(shù)的學(xué)習(xí)問題建模為具有非線性約束的可行區(qū)域問題。其主要思想是通過松弛投影算法序列化地將回報函數(shù)估計值對特定約束平面進行松弛投影。本方法避免了在回報函數(shù)估計過程中調(diào)用耗
4、時的增強學(xué)習(xí)子過程。為了減少計算量,本文還討論了約束約減方法。另外本文分別對上述兩種方法進行了收斂性質(zhì)的分析。
其次,為了解決當(dāng)前算法中對回報函數(shù)僅進行點估計的局限性,本文在貝葉斯框架下將回報函數(shù)擴展到連續(xù)空間的分布形式并對回報函數(shù)進行分布估計。首先,本文基于貝葉斯框架引入了核方法,提出了基于高斯過程的回報函數(shù)建模方法。通過回報函數(shù)的高斯過程建模,本文將已有的逆向增強學(xué)習(xí)方法進行了擴展,提出了基于高斯過程的逆向增強學(xué)習(xí)算法
5、。該算法不僅給出了回報函數(shù)估計值的置信度信息,還通過核方法定義了學(xué)習(xí)特征。這些性質(zhì)提高了基于逆向增強學(xué)習(xí)的示教學(xué)習(xí)在應(yīng)用中的實用性。
然后,針對基于逆向增強學(xué)習(xí)的示教學(xué)習(xí)中示教策略存在噪聲的問題,本文提出了基于貝葉斯logistic回歸和變分近似方法的逆向增強學(xué)習(xí)算法。其主要思想是通過示教軌跡構(gòu)造示教樣本集將逆向增強學(xué)習(xí)的分類問題建模為貝葉斯logistic回歸問題。變分貝葉斯方法被用來對后驗分布進行近似求解。貝葉斯log
6、istic回歸方法對數(shù)據(jù)的抗噪特點為本算法帶來了良好的對示教數(shù)據(jù)的魯棒性。
最后,本文討論了逆向增強學(xué)習(xí)方法在智能機器人行為樣本評測問題中的應(yīng)用。針對地面自主機器人評測系統(tǒng)中評測標準難以定義的問題,本文提出了一種基于傾向性分析的智能系統(tǒng)評測方法。該方法首先采用了基于主元分析法的特征提取方法對地面自主機器人行為樣本數(shù)據(jù)進行了預(yù)處理,然后利用逆向增強學(xué)習(xí)算法、策略不變條件下的回報函數(shù)變形定理和線性子空間距離定義得到地面自主機器
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 迭代學(xué)習(xí)控制算法的研究及其在機器人中的應(yīng)用.pdf
- 基于增強學(xué)習(xí)的優(yōu)化控制方法及其在移動機器人中的應(yīng)用.pdf
- 學(xué)習(xí)控制收斂速度的研究及在機器人中的應(yīng)用.pdf
- 自適應(yīng)迭代學(xué)習(xí)控制在機器人中的應(yīng)用
- 自適應(yīng)迭代學(xué)習(xí)控制在機器人中的應(yīng)用.pdf
- 多智能體增強式學(xué)習(xí)及其在多機器人協(xié)調(diào)中的應(yīng)用研究.pdf
- 文化算法的改進設(shè)計及其在服務(wù)機器人中的應(yīng)用.pdf
- 人臉識別技術(shù)在智能機器人中的應(yīng)用研究.pdf
- 人臉識別技術(shù)在智能畫像機器人中的應(yīng)用研究.pdf
- 模糊控制及其在噴漿機器人中的應(yīng)用.pdf
- 字典學(xué)習(xí)算法研究及其在語音增強中的應(yīng)用.pdf
- 視覺技術(shù)在機器人中的應(yīng)用
- 機器學(xué)習(xí)算法及其應(yīng)用研究.pdf
- 基于視覺的目標跟蹤算法研究及其在移動機器人中的應(yīng)用.pdf
- 基于優(yōu)化狀態(tài)轉(zhuǎn)換信任度的增強型學(xué)習(xí)算法及其在機器人控制中的應(yīng)用.pdf
- 基于進化算法的智能機器人行為學(xué)習(xí)研究.pdf
- 基于分布式機器人體系結(jié)構(gòu)的逆向增強學(xué)習(xí)技術(shù).pdf
- 多智能體強化學(xué)習(xí)及其在機器人足球中的應(yīng)用研究.pdf
- 分布式強化學(xué)習(xí)理論及在多機器人中的應(yīng)用研究.pdf
- 機器學(xué)習(xí)算法及其工程應(yīng)用研究.pdf
評論
0/150
提交評論