2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩61頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、Medical image segmentation is one of the essential step of medical image processing,and it plays a crucial role in both biomedicine research and virtual surgery applications such as study of anatomical structure, quantif

2、ication of tissue volumes, localization of pathology, diagnosis, treatment planning, and computer aided surgery, etc. As a result,accurate segmentation method is crucial to the follow-up analysis. This paper aims to

3、 do some applicational simulation and algorithm improvement research on medical image segmentation algorithms. Based on analyzing geometric active contour characteristic and comparing advantages and shortcomings of vario

4、us deformable model segmentation algorithms, we mainly study on the feasibility and improvement approaches of applying Level Set deformable models and on the basis of Level Set theory,application of Fast Marching method

5、to medical images is studied. Firstly, in this work, basing on Level Set method and combining with the contour energy conception of Snake deformable model, the first modification integrates the average energy of the

6、 whole advancing front in traditional Fast Marching method. Then add to incorporate the gray level information of the target region into the speed term to let the evolution curve advance in the target region to solve the

7、 "boundary leaking" problem of the traditional Fast Marching method. Secondly, the improved segmentation algorithm combining Fast Marching and Level Set method is proposed in order to use Level Set method's advantag

8、es. In the simulational experiment, we can point multi-seed to extract the desired boundary of the hole in objective image. The results show that this method can remove the small regions obtained from Fast Marching metho

9、d and converge the desired boundary. In the last, the paper introduces the Mumford-Shah model and C-V model. Our model has a Level Set formulation, interior contour are automatically detected, and the initial curve

10、can be anywhere in the image. We have successfully applied this model to medical image segmentation and implemented the multi-phase Level Set model. The result show that this model can overcome the shortage of the classi

11、cal segmentation model by using the global information of image to make curve stop at the edge of the object, and can detect objects with very smooth boundary or even with discontinuous boundaries. This research int

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論