版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 畢業(yè)設(shè)計(jì)/論文</b></p><p> 外 文 文 獻(xiàn) 翻 譯</p><p> 系 別 通信工程與技術(shù)系 </p><p> 專 業(yè) 班 級(jí) 0703 </p><p> 姓 名
2、 </p><p> 評(píng) 分 </p><p> 指 導(dǎo) 教 師 </p><p> 20 年 月 日</p><p><b> 香農(nóng)和“香農(nóng)公式”</b&g
3、t;</p><p> Lars Lundheim{挪威科學(xué)技術(shù)大學(xué),通信系,教授}</p><p> 在科學(xué)技術(shù)史上,十九世紀(jì)中葉和二十世紀(jì)中葉是一個(gè)非常突出的時(shí)期。在這個(gè)時(shí)期,一些發(fā)明和創(chuàng)作的實(shí)現(xiàn)消除了許多對(duì)個(gè)人和社會(huì)的有影響的限制。特別是在通信領(lǐng)域,迅速的發(fā)展就好像高架鐵路,蒸汽輪船,航空和電信一樣。值得人注意的是一些有趣的事情。由于一些限制被拆除,一些基本的或主要的隨即建立了新
4、的限制。例如,卡羅表明,從熱機(jī)提煉出來的熱能量是有一個(gè)極限值的。后來,這一定律被推廣到了第二定律熱力學(xué)。就像愛因斯坦的狹義相對(duì)論,一個(gè)機(jī)制的速度被發(fā)現(xiàn)。其他例子包括Kelvin的絕對(duì)零度,Heissenberg的測(cè)不準(zhǔn)原理和哥德爾不完備性定理的數(shù)學(xué)。在1948年出版的香農(nóng)信道編碼定理似乎是最后一個(gè)被發(fā)現(xiàn)的限制,人們或者會(huì)奇怪,為什么所有的限制都是在這個(gè)有限的時(shí)間內(nèi)完成的。有一個(gè)原因可以解釋。當(dāng)一個(gè)學(xué)者還年輕的時(shí)候,他總是試著去發(fā)現(xiàn)一些東
5、西——一些他們不能確定的東西。由于通信是在科學(xué)發(fā)展中時(shí)間最短的一個(gè),很自然的它基本的法則是建立在后期階段。在本論文中,我們會(huì)盡量除開一些事態(tài)的發(fā)展對(duì)香農(nóng)公式的影響。</p><p><b> 香農(nóng)公式</b></p><p> 有時(shí)候,一個(gè)“天才之舉”科學(xué)成果的產(chǎn)生會(huì)讓人無法想象是來自于一個(gè)私人科學(xué)家。更常見的是有幾個(gè)獨(dú)立的小組在一個(gè)特定的成熟的時(shí)機(jī)逐步研究出來的
6、。在本文中我們將著眼于一個(gè)特定的概念,一個(gè)頻帶有限的信息傳輸通道的通道容量加白噪聲,高斯噪音。這就是所謂的“香農(nóng)公式”:</p><p> C = W log2(1 + P/N) bits/s</p><p> 我們逐步發(fā)現(xiàn),一方面,二戰(zhàn)過后這么些年,當(dāng)時(shí)已經(jīng)是一個(gè)成熟的時(shí)機(jī),另一方面,香農(nóng)公式是一個(gè)非常特殊的發(fā)現(xiàn),很多有識(shí)之士都非常的認(rèn)同這個(gè)觀點(diǎn)。許多數(shù)學(xué)表達(dá)式都用有關(guān)香農(nóng)的名字來命
7、名。這個(gè)例子并不是最著名的,但在通信領(lǐng)域中或許是最知名的。這也是當(dāng)時(shí)最迅速最有價(jià)值的理解之一了。</p><p> 對(duì)香農(nóng)工作的介紹,這個(gè)問題在N. Knudtzon的論文上看到了。</p><p> 香農(nóng)公式:如果信息源的信息速率R小于或者等于信道容量C,那么,在理論上存在一種方法可使信息源的輸出能夠以任意小的差錯(cuò)概率通過信道傳輸。 </p><p> 該定
8、理還指出:如果R>C,則沒有任何辦法傳遞這樣的信息,或者說傳遞這樣的二進(jìn)制信息的差錯(cuò)率為1/2。作為一個(gè)通信工程師,不論誰都應(yīng)該對(duì)這個(gè)定理很熟悉了,即使理解那個(gè)結(jié)果。這在1948年已經(jīng)是不爭(zhēng)的事實(shí)了。而帶寬和信號(hào)的力量因此出名,并且出現(xiàn)在第一期的“香農(nóng)”報(bào)上。概念的概率分布和隨機(jī)過程、潛在的假定的噪聲模型,一直用于研究社區(qū)幾年的一部分,而不是一個(gè)普通的電氣工程師的培訓(xùn)。</p><p> 香農(nóng)公式的基本因
9、素是:</p><p><b> 帶寬w</b></p><p><b> 信號(hào)功率s</b></p><p><b> 噪聲功率p</b></p><p><b> 他們構(gòu)成對(duì)數(shù)函數(shù)</b></p><p> 信道帶寬的
10、限制,通過設(shè)置一個(gè)符號(hào),以便通過快速通道進(jìn)行信道傳輸。信噪比可以決定每個(gè)符號(hào)能代表多少信息。在結(jié)束時(shí),信噪比可以用來計(jì)算通道接受段的信息量。因此,功率電平都是一種透射光力量和衰減信號(hào)在傳輸媒介上(頻道)的能量 最優(yōu)秀的夏儂論文可能是1948年至1949年它們的共性相結(jié)合時(shí)的獨(dú)特效果和共性闡述。它們服從一定的概率分布。同樣的,信道基本上表示從一個(gè)符號(hào)映射到另一個(gè)符號(hào)并且服從相應(yīng)的概率分布。結(jié)合起來,這個(gè)結(jié)論就適合任何的通信系統(tǒng)了,人造的或
11、者自然的,電子的或者手工的。</p><p> 克勞德·埃爾伍德夏儂(1916-2001),信息理論的創(chuàng)始人,也是一個(gè)實(shí)踐和頑皮的一邊。這張照片顯示他發(fā)明的一個(gè)機(jī)械“老鼠",可以找到它的方式通過一個(gè)迷宮。他也被他的信息工作和數(shù)字工作累的瘦長(zhǎng)。</p><p><b> 獨(dú)立發(fā)現(xiàn):</b></p><p> 一個(gè)重要指標(biāo)
12、,時(shí)機(jī)已經(jīng)成熟,理論在第一資料的傳輸了戰(zhàn)后的眾多的論文發(fā)表在這樣的理論嘗試。特別是三個(gè)公式相當(dāng)?shù)南嗨啤_@些最著名的是公布維納于1949年的《控制論》。羅伯特維拉是一個(gè)麻省理工學(xué)院的教授,總所周知的是,他是一個(gè)有哲學(xué)傾向的心不在焉的數(shù)學(xué)教授。盡管如此,他深為關(guān)切關(guān)于數(shù)學(xué)在社會(huì)各個(gè)領(lǐng)域的應(yīng)用。這種哲學(xué)興趣正好讓他建立了科學(xué)的控制論。這個(gè)領(lǐng)域,這也許是最好的了[2]字幕定義:“控制與通信在動(dòng)物和機(jī)器“包括,除其他事項(xiàng)外,理論信息內(nèi)容在一個(gè)信
13、號(hào),這些信息通過信道傳輸。維拉是這樣想的,但是思想交流不是他所能控制的,關(guān)于香農(nóng)公式,相關(guān)的信息和繁瑣的符號(hào)表現(xiàn)的并不明顯。參考與維拉的工作,更加證明了香農(nóng)公式的正確性蒂尤爾是麻省理工學(xué)院的電子研究實(shí)驗(yàn)室雇員在20世紀(jì)40年代后半期。1948年他在麻省理工學(xué)院的辯訴“關(guān)于信息4的傳播”獲得了極大的好評(píng)。在他的論文蒂尤爾開始參照Nyquist的和哈特利的工程(見下文)倚在采樣和一個(gè)帶限信號(hào)量化使用,他們認(rèn)為由一個(gè)帶符號(hào)間干擾限制渠道引進(jìn)原
14、則上可以淘汰,他的國家非常正確,在無噪聲條件下無限量信息可以傳輸?shù)倪@樣一個(gè)渠道??紤]到噪音,他提供了一個(gè)參數(shù)</p><p> H ≤ 2BT log(1 + C/N)</p><p> 這句話,和香農(nóng)公式驚人的相似,大多數(shù)讀者會(huì)視為等同。有趣的是,注意,在推導(dǎo)(2)蒂尤爾承擔(dān)使用PCM編碼。一個(gè)不是由香農(nóng)引用的工作成為克拉唯愛紙。在一個(gè)類似的方式蒂尤爾,開始出與哈特利的工作,并假設(shè)使
15、用的PCM編碼,鍵盤基本上找到一個(gè)公式等價(jià)于(1)及(2)。第四個(gè)獨(dú)立的發(fā)現(xiàn)是在1948年由Laplume一出版。</p><p> On Shannon and “Shannon’s formula”</p><p> Lars Lundheim</p><p> Department of Telecommunication, Norwegian Univ
16、ersity of Science and</p><p> Technology (NTNU)</p><p> The period between the middle of the nineteenth and the middle of the twentieth century represents a</p><p> remarkable pe
17、riod in the history of science and technology. During this epoch, several discoveries and</p><p> inventions removed many practical limitations of what individuals and societies could achieve.</p>&l
18、t;p> Especially in the field of communications, revolutionary developments took place such as high speed</p><p> railroads, steam ships, aviation and telecommunications.</p><p> It is inte
19、resting to note that as practical limitations were removed, several fundamental or principal</p><p> limitations were established. For instance, Carnot showed that there was a fundamental limit to how</p
20、><p> much energy could be extracted from a heat engine. Later this result was generalized to the second law</p><p> of thermodynamics. As a result of Einstein’s special relativity theory, the ex
21、istence of an upper velocity</p><p> limit was found. Other examples include Kelvin’s absolute zero, Heissenberg’s uncertainty principle</p><p> and Gödel’s incompleteness theorem in math
22、ematics. Shannon’s Channel coding theorem, which was</p><p> published in 1948, seems to be the last one of such fundamental limits, and one may wonder why all of</p><p> them were discovered
23、during this limited time-span. One reason may have to do with maturity. When a</p><p> field is young, researchers are eager to find out what can be done – not to identify borders they cannot</p><
24、;p> pass. Since telecommunications is one of the youngest of the applied sciences, it is natural that the</p><p> more fundamental laws were established at a late stage.</p><p> In the pre
25、sent paper we will try to shed some light on developments that led up to Shannon’s</p><p> information theory. </p><p> “Shannon’s formula”</p><p> Sometimes a scientific result
26、comes quite unexpected as a “stroke of genius” from an individual</p><p> scientist. More often a result is gradually revealed, by several independent research groups, and at a</p><p> time wh
27、ich is just ripe for the particular discovery. In this paper we will look at one particular concept,</p><p> the channel capacity of a band-limited information transmission channel with additive white, Gaus
28、sian</p><p> noise. This capacity is given by an expression often known as “Shannon’s formula1”:</p><p> C = W log2(1 + P/N) bits/second. (1)</p><p> We intend to show that, on t
29、he one hand, this is an example of a result for which time was ripe exactly</p><p> a few years after the end of World War II. On the other hand, the formula represents a special case of</p><p>
30、; Shannon’s information theory2 presented in [1], which was clearly ahead of time with respect to the</p><p> insight generally established. Many mathematical expressions are connected with Shannon’s name.
31、 The one quoted here is not the</p><p> most important one, but perhaps the most well-known among communications engineers. It is also the</p><p> one with the most immediately understandable
32、significance at the time it was published.</p><p> 2 For an introduction to Shannon’s work, see the paper by N. Knudtzon in this issue.</p><p> “Shannon’s formula” (1) gives an expression for
33、how many bits of information can be transmitted</p><p> without error per second over a channel with a bandwidth of W Hz, when the average signal power is</p><p> limited to P watt, and the si
34、gnal is exposed to an additive, white (uncorrelated) noise of power N with</p><p> Gaussian probability distribution. For a communications engineer of today, all the involved concepts</p><p>
35、are familiar – if not the result itself. This was not the case in 1948. Whereas bandwidth and signal</p><p> power were well-established, the word bit was seen in print for the first time in Shannon’s paper
36、. The</p><p> notion of probability distributions and stochastic processes, underlying the assumed noise model, had</p><p> been used for some years in research communities, but was not part o
37、f an ordinary electrical engineer’s</p><p><b> training.</b></p><p> The essential elements of “Shannon’s formula” are:</p><p> 1. Proportionality to bandwidth W</
38、p><p> 2. Signal power S</p><p> 3. Noise power P</p><p> 4. A logarithmic function</p><p> The channel bandwidth sets a limit to how fast symbols can be transmitted o
39、ver the channel. The signal</p><p> to noise ratio (P/N) determines how much information each symbol can represent. The signal and noise</p><p> power levels are, of course, expected to be mea
40、sured at the receiver end of the channel. Thus, the</p><p> power level is a function both of transmitted power and the attenuation of the signal over the</p><p> transmission medium (channel)
41、.</p><p> The most outstanding property of Shannon’s papers from 1948 and 1949 is perhaps the unique</p><p> combination of generality of results and clarity of exposition. The concept of an i
42、nformation source is</p><p> generalized as a symbol-generating mechanism obeying a certain probability distribution. Similarly, the</p><p> channel is expressed essentially as a mapping from
43、one set of symbols to another, again with an</p><p> associated probability distribution. Together, these two abstractions make the theory applicable to all</p><p> kinds of communication syst
44、ems, man-made or natural, electrical or mechanical.</p><p> Claude Elwood Shannon (1916-2001), the founder of information theory, had also a practical and</p><p> a playful side. The photo sho
45、ws him with one of his inventions: a mechanical “mouse” that could</p><p> find its way through a maze. He is also known for his electronic computer working with roman</p><p> numerals and a g
46、asoline-powered pogo stick.</p><p> Independent discoveries</p><p> One indicator that the time was ripe for a fundamental theory of information transfer in the first postwar</p><p&
47、gt; years is given in the numerous papers attempting at such theories published at that time. In</p><p> particular, three sources give formulas quite similar to (1). The best known of these is the book en
48、titled</p><p> Cybernetics [2] published by Wiener in 1949. Norbert Wiener was a philosophically inclined and</p><p> proverbially absent-minded professor of mathematics at MIT. Nonetheless, h
49、e was deeply concerned</p><p> about the application of mathematics in all fields of society. This interest led him to founding the</p><p> science of cybernetics. This field, which is perhaps
50、 best defined by the subtitle of [2]: “Control and</p><p> Communication in the Animal and the Machine” included, among other things, a theory for</p><p> information content in a signal and t
51、he transmission of this information through a channel. Wiener was,</p><p> however, not a master of communicating his ideas to the technical community, and even though the</p><p> relation to
52、Shannon’s formula is pointed out in [2], the notation is cumbersome, and the relevance to</p><p> practical communication systems is far from obvious.</p><p> Reference to Wiener’s work was do
53、ne explicitly by Shannon in [1]. He also acknowledged the work by</p><p> Tuller3. William G. Tuller was an employee at MIT’s Research Laboratory for Electronics in the</p><p> second half of
54、the 1940s. In 1948 he defended a thesis at MIT on “Theoretical Limitations on the Rate</p><p> of Transmission of Information4”. In his thesis Tuller starts by referring to Nyquist’s and Hartley’s</p>
55、<p> works (see below). Leaning on the use of sampling and quantization of a band-limited signal, and</p><p> arguing that intersymbol interference introduced by a band-limited channel can in princi
56、ple be</p><p> eliminated, he states quite correctly that under noise-free conditions an unlimited amount of</p><p> information can be transmitted over such a channel. Taking noise into accou
57、nt, he delivers an argument</p><p> partly based on intuitive reasoning, partly on formal mathematics, arriving at his main result that the</p><p> information H transmitted over a transmissio
58、n link of bandwidth B during a time interval T with</p><p> carrier-to-noise-ratio C/N is limited by</p><p> H ≤ 2BT log(1 + C/N). (2)</p><p> This expression has a striking rese
59、mblance to Shannon’s formula, and would by most readers be</p><p> considered equivalent. It is interesting to note that for the derivation of (2) Tuller assumes the use of</p><p> PCM encodin
60、g.</p><p> A work not referenced by Shannon is the paper by Clavier [16]5. In a similar fashion to Tuller, starting</p><p> out with Hartley’s work, and assuming the use of PCM coding, Clavier
61、 finds a formula essentially</p><p> equivalent to (1) and (2). A fourth independent discovery is the one by Laplume published in 1948</p><p> 以上內(nèi)容出自:http://citeseerx.ist.psu.edu/viewdoc/summa
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 編碼信道香農(nóng)限的分析和計(jì)算.pdf
- 基于香農(nóng)信息熵的心電檢測(cè)研究.pdf
- 賓陽古辣鎮(zhèn)鳴香農(nóng)家樂
- 湖南三香農(nóng)林公司產(chǎn)業(yè)融合發(fā)展研究.pdf
- 基于香農(nóng)熵和互信息的主題優(yōu)化方法的研究.pdf
- 接近香農(nóng)極限的信道編碼與FPGA實(shí)現(xiàn).pdf
- 量子系統(tǒng)的概率密度函數(shù)控制和香農(nóng)熵控制研究.pdf
- 基于香農(nóng)—韋弗傳播模式的企業(yè)內(nèi)知識(shí)轉(zhuǎn)移影響因素分析
- 基于局部平均的香農(nóng)采樣展開式的截?cái)嗾`差估計(jì).pdf
- 信息論與編碼課程設(shè)計(jì)--統(tǒng)計(jì)信源熵與香農(nóng)編碼
- 逼近香農(nóng)限的檢測(cè)解碼算法與差錯(cuò)控制技術(shù)研究.pdf
- 基于香農(nóng)映射定理的語音信號(hào)信源信道聯(lián)合編碼的研究.pdf
- 珠海稻子香農(nóng)產(chǎn)品有限公司建設(shè)項(xiàng)目環(huán)境影響報(bào)告表
- 外文和翻譯.doc
- 激勵(lì)和獎(jiǎng)勵(lì)【外文翻譯】
- 外文翻譯--審計(jì)和管理
- 外文翻譯-----cam和cnc
- 品牌和品牌【外文翻譯】
- 外文翻譯--車床和車削
- 外文翻譯和原文.doc
評(píng)論
0/150
提交評(píng)論