二次函數(shù)與冪函數(shù)(測)-2019年高考數(shù)學(xué)---精校解析講練測 word版_第1頁
已閱讀1頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、<p>  2019年高考數(shù)學(xué)講練測【浙江版】【測】</p><p><b>  第二章 函數(shù)</b></p><p>  第05節(jié) 二次函數(shù)與冪函數(shù)</p><p>  班級__________ 姓名_____________ 學(xué)號___________ 得分__________</p><p>

2、  一、選擇題:本大題共10小題,每小題4分,共40分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.</p><p>  1. 已知函數(shù)f(x)=ax2+bx+c,不等式f(x)<0的解集為,則函數(shù)y=f(-x)的圖象可以為</p><p>  A. B. </p><p><b>  C. D. </b><

3、/p><p><b>  【答案】B</b></p><p>  【解析】由f(x)<0的解集為知a<0,y=f(x)的圖象與x軸交點(diǎn)為(-3,0),(1,0),所以y=f(-x)圖象開口向下,與x軸交點(diǎn)為(3,0),(-1,0).故選B.</p><p>  2.【浙江省名校協(xié)作體】的值域?yàn)椋瑒t的取值范圍是( )</p>

4、;<p>  A. B. C. D. </p><p><b>  【答案】D</b></p><p>  【解析】由值域?yàn)椋芍”樯系乃袑?shí)數(shù),</p><p>  當(dāng)時, 能取遍上的所有實(shí)數(shù),只需定義域滿足</p><p>  當(dāng)時,要保證能取遍上的所有實(shí)數(shù),只需,解得&

5、lt;/p><p><b>  ,所以,選D.</b></p><p>  3.【2018屆安徽省示范高中(皖江八校)第八次(5月)聯(lián)考】已知函數(shù)的圖象如圖所示,則的大小關(guān)系為( )</p><p>  A. B. C. D. </p><p><b>  【答案】A</b>

6、;</p><p>  4.已知冪函數(shù)的圖象經(jīng)過點(diǎn),則冪函數(shù)具有的性質(zhì)是( )</p><p>  A. 在其定義域上為增函數(shù) B. 在其定義域上為減函數(shù)</p><p>  C. 奇函數(shù) D. 定義域?yàn)?lt;/p><p><b>  【答案】A</b></p>&

7、lt;p>  【解析】分析:設(shè)冪函數(shù),將代入解析式即可的結(jié)果.</p><p>  詳解:設(shè)冪函數(shù),冪函數(shù)圖象過點(diǎn),</p><p><b>  ,</b></p><p><b>  ,</b></p><p>  由的性質(zhì)知,是非奇非偶函數(shù),值域?yàn)椋?lt;/p><p>

8、;  在定義域內(nèi)無最大值,在定義域內(nèi)單調(diào)遞增,故選A.</p><p>  5. 已知,,函數(shù).若,則( )</p><p>  A. , B. , C. , D. ,</p><p><b>  【答案】B</b></p><p>  6. 【浙江省臺州中學(xué)期中】若函數(shù)在區(qū)間和上均為增函數(shù),則實(shí)

9、數(shù)的取值范圍是( )</p><p>  A. B. C. D. </p><p><b>  【答案】D</b></p><p>  【解析】分析:由為實(shí)數(shù)集上的偶函數(shù),將問題轉(zhuǎn)化為在區(qū)間遞增和在上遞減,利用二次函數(shù)的單調(diào)性列不等式求解即可.</p><p><b>  詳解:,

10、</b></p><p><b>  ,</b></p><p>  為實(shí)數(shù)集上的偶函數(shù),</p><p>  因?yàn)樵趨^(qū)間和上均為增函數(shù),</p><p>  所以在區(qū)間遞增和在上遞減,,</p><p><b>  函數(shù),的對稱軸,</b></p>

11、<p><b>  得,故選D.</b></p><p>  7.已知函數(shù),若,則實(shí)數(shù)a的取值范圍是(  )</p><p>  A.[-2,2] B.(-2,2] C.[-4,2] D.[-4,4]</p><p><b>  【答案】A</b></p><p>  【解析】

12、 由,知,,解得.</p><p>  8.設(shè)函數(shù),,則 (  )</p><p>  A.56 B.112 C.0 D.38</p><p><b>  【答案】B</b></p><p>  【解析】由二次函數(shù)圖象的性質(zhì)得,當(dāng)3≤x≤20時,,∴.</p><p>  9.【2017

13、河北衡水中學(xué)模擬】已知二次函數(shù)的兩個零點(diǎn)分別在區(qū)間和內(nèi),則的取值范圍是 ( )</p><p>  A. B. C. D. </p><p><b>  【答案】A</b></p><p>  10. 函數(shù).若存在,使得,則的取值范圍是( ).</p><p>  A. B.

14、 C. D. </p><p><b>  【答案】D</b></p><p>  【解析】分析:根據(jù)絕對值定義分類討論:當(dāng)時, 恒成立,當(dāng)時,根據(jù)二次函數(shù)對稱軸確定函數(shù)單調(diào)性,根據(jù)單調(diào)性得最小值,再根據(jù)最小值小于零解得的取值范圍.</p><p><b>  詳解:當(dāng)時,,</b></p>&

15、lt;p><b>  因此,</b></p><p><b>  可化為,</b></p><p><b>  即存在,</b></p><p><b>  使成立,</b></p><p>  由于的對稱軸為,所以,</p><

16、p>  連單調(diào)遞增,因此只要,</p><p><b>  即,解得,</b></p><p><b>  又因,所以,</b></p><p><b>  當(dāng)時, 恒成立,</b></p><p><b>  綜上,.</b></p>

17、<p><b>  選.</b></p><p>  二、填空題:本大題共7小題,共36分.</p><p>  11.已知函數(shù)在區(qū)間上為減函數(shù),則實(shí)數(shù)的取值范圍為__________.</p><p><b>  【答案】.</b></p><p>  【解析】分析:由題意結(jié)合二次函數(shù)

18、的性質(zhì)得到關(guān)于a的不等式,求解不等式即可求得a的取值范圍.</p><p>  詳解:∵函數(shù)的圖象是開口方向朝上,以為對稱軸的拋物線,</p><p>  若函數(shù)在區(qū)間上是減函數(shù),</p><p><b>  則,</b></p><p><b>  即.</b></p><p&

19、gt;  12.【2018屆天津市耀華中學(xué)高三上學(xué)期第三次月考】若冪函數(shù)在上為增函數(shù),則實(shí)數(shù)的值為_________.</p><p><b>  【答案】2</b></p><p>  13.【2018屆湖北省部分重點(diǎn)中學(xué)高三上學(xué)期第二次聯(lián)考】已知冪函數(shù)的圖象關(guān)于軸對稱,且在區(qū)間上為減函數(shù),則的值為__________.</p><p>&l

20、t;b>  【答案】</b></p><p>  【解析】為偶數(shù),且小于0,即,解得,驗(yàn)證得</p><p>  14.【2017江蘇蘇錫常鎮(zhèn)四市調(diào)研】已知函數(shù)若函數(shù)有三個零點(diǎn),則實(shí)數(shù)的取值范圍為__________.</p><p><b>  【答案】</b></p><p>  【解析】與相切時

21、(正舍),與相切時 , 與不相切.由圖可知實(shí)數(shù)的取值范圍為 </p><p>  15.已知二次函數(shù),,,,,時,其對應(yīng)的拋物線在軸上截得的線段長依次為,,,,,則__________.</p><p><b>  【答案】</b></p><p>  【解析】分析:當(dāng)時,結(jié)合方程的根與系數(shù)關(guān)系可求,然后利用裂項(xiàng)求和方法即可得結(jié)果.</p

22、><p><b>  詳解:當(dāng)時,</b></p><p><b>  ∴,,</b></p><p><b>  ∴,</b></p><p><b>  ∴,</b></p><p><b>  故答案為:.</b&

23、gt;</p><p>  16.【2018屆浙江省嵊州市高三上期末】已知函數(shù)的最小值為,則實(shí)數(shù)的值為__________.</p><p><b>  【答案】</b></p><p>  【解析】(1)當(dāng)時, , ;(2)當(dāng)時,①若時, , , , ,無解.</p><p> ?、跁r, , , ,解得,綜上所述,實(shí)

24、數(shù)的值為,故答案為.</p><p>  17.已知函數(shù)在時有最大值,,并且時,的取值范圍為,則__________.</p><p><b>  【答案】</b></p><p>  【解析】分析:由函數(shù)在時有最大值,可得,先判斷在上單調(diào)遞減,可得,解高次方程即可得結(jié)果.</p><p>  詳解:函數(shù)在時有最大值,&

25、lt;/p><p><b>  則可得,,</b></p><p><b>  ,</b></p><p><b>  在上單調(diào)遞減,</b></p><p><b>  則滿足,</b></p><p><b>  ,<

26、;/b></p><p><b>  ,解得,</b></p><p><b>  又,故答案為.</b></p><p>  三、解答題:本大題共5小題,共74分.解答應(yīng)寫出文字說明、證明過程或演算步驟.</p><p>  18.【山東省2018年普通高校招生(春季)考試】已知函數(shù),其中為

27、常數(shù).</p><p>  (1)若函數(shù)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)的取值范圍:</p><p>  (2)若,都有,求實(shí)數(shù)的取值范圍.</p><p>  【答案】(1)(2)</p><p>  【解析】分析:(1)根據(jù)二次函數(shù)性質(zhì)得對稱軸不在區(qū)間 內(nèi),解不等式可得實(shí)數(shù)的取值范圍,(2) 根據(jù)二次函數(shù)圖像得得在x軸上方,即,解得實(shí)數(shù)的取值范圍

28、.</p><p>  詳解:(1)因?yàn)殚_口向上,</p><p>  所以該函數(shù)的對稱軸是</p><p><b>  因此</b></p><p><b>  解得</b></p><p><b>  所以的取值范圍是.</b></p>

29、<p><b>  (2)因?yàn)楹愠闪ⅲ?lt;/b></p><p><b>  所以</b></p><p><b>  整理得</b></p><p><b>  解得</b></p><p>  因此, 的取值范圍是.</p>&

30、lt;p>  19. 已知函數(shù) .</p><p>  (1)若函數(shù)的定義域?yàn)?,求實(shí)數(shù) 的取值范圍;</p><p> ?。?)當(dāng) 且 時,求函數(shù) 的值域.</p><p>  【答案】(1);(2).</p><p><b>  20.已知函數(shù).</b></p><p>  (1)若對于

31、恒成立,求實(shí)數(shù)的取值范圍;</p><p>  (2)若對于恒成立,求實(shí)數(shù)的取值范圍.</p><p>  【答案】(1);(2).</p><p>  【解析】分析:(1)討論的符號并結(jié)合二次不等式的恒成立可得結(jié)論.(2)分離參數(shù)轉(zhuǎn)化為求函數(shù)的最值的問題處理,然后根據(jù)二次函數(shù)的最值可得所求的范圍.</p><p>  詳解:(1)①當(dāng)時,恒

32、成立.</p><p>  ②當(dāng)時,由在上恒成立得</p><p><b>  ,解得,</b></p><p><b>  綜上可得.</b></p><p>  ∴實(shí)數(shù)的取值范圍為.</p><p>  (2)由題意得對于恒成立,</p><p>

33、<b>  即對于恒成立,</b></p><p><b>  ∵,</b></p><p><b>  ∴對于恒成立.</b></p><p><b>  記,+,</b></p><p><b>  則在上為增函數(shù),</b><

34、;/p><p><b>  ∴在上為減函數(shù),</b></p><p><b>  ∴,</b></p><p><b>  ∴.</b></p><p>  ∴實(shí)數(shù)的取值范圍是.</p><p>  21.【浙江省臺州中學(xué)期中】已知二次函數(shù),,且的零點(diǎn)滿足

35、</p><p><b>  (I)求的解析式;</b></p><p>  (Ⅱ)當(dāng)時,不等式恒成立,求實(shí)數(shù)的取值范圍.</p><p>  【答案】(1)(2)</p><p>  【解析】分析:(1)由可得對稱軸,由,根據(jù)韋達(dá)定理可得 ,從而可得結(jié)果;(2)原不等式等價(jià)于恒成立,討論兩種情況,與,進(jìn)而可得結(jié)果.&l

36、t;/p><p><b>  詳解: (I) </b></p><p><b>  (Ⅱ) </b></p><p><b>  ,</b></p><p><b>  即在上恒成立</b></p><p><b>  即:

37、</b></p><p><b> ?、?</b></p><p><b>  ② </b></p><p>  當(dāng)時,式成立;當(dāng)時,</p><p><b>  所以:</b></p><p><b>  又因?yàn)?lt;/b&g

38、t;</p><p><b>  綜上所述:</b></p><p>  22.【2017屆浙江省麗水市高三下學(xué)期測試】設(shè)函數(shù).</p><p> ?。?)求在上的最小值的表達(dá)式;</p><p> ?。?)若在閉區(qū)間上單調(diào),且,求的取值范圍.</p><p>  【答案】(1) (2)&l

39、t;/p><p><b>  【解析】試題分析:</b></p><p>  (1)結(jié)合二次函數(shù)的性質(zhì)分類討論可得 </p><p>  (2)分類討論在閉區(qū)間上單調(diào)遞增和單調(diào)遞減兩種情況,計(jì)算可得的取值范圍是.</p><p><b>  試題解析:</b></p><p> 

40、 (1)當(dāng),即時, ,</p><p><b>  當(dāng),即時, ,</b></p><p><b>  當(dāng),即時, ,</b></p><p><b>  綜上所述, .</b></p><p> ?。?)①若在上遞增,則滿足: ,即方程在上有兩個不相等的實(shí)數(shù)根,</p&

41、gt;<p><b>  設(shè),</b></p><p><b>  則,則</b></p><p>  ②若在上遞減,則滿足:</p><p>  , ,可以得到: 代入可以得到:</p><p><b>  則是方程的兩個根,</b></p>&l

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論