

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、麗水學(xué)院2012屆學(xué)生畢業(yè)論文數(shù)學(xué)分析中反證法的應(yīng)用理學(xué)院數(shù)學(xué)082董澤剛指導(dǎo)師:胡亞紅摘要:摘要:本文研究了數(shù)學(xué)分析中不同問(wèn)題的反證法。對(duì)數(shù)學(xué)分析中的反證法進(jìn)行總結(jié)研究,共分為數(shù)列極限的唯一性和收斂性,函數(shù)的連續(xù)、有界、極限和單調(diào)性,導(dǎo)數(shù)和積分,級(jí)數(shù)等四個(gè)部分,各部分之間并非完全獨(dú)立。本文對(duì)理解數(shù)學(xué)分析的基本概念,掌握數(shù)學(xué)分析的基本理論和技巧很有好處。關(guān)鍵詞:關(guān)鍵詞:反證法;命題;應(yīng)用在數(shù)學(xué)解題中經(jīng)常使用反證法,牛頓曾經(jīng)說(shuō)過(guò):“反證法
2、是數(shù)學(xué)家最精當(dāng)?shù)奈淦髦弧?。具體、簡(jiǎn)單的命題;或者直接證明難以下手的命題,改變其思維方向,從結(jié)論入手進(jìn)行反面思考,問(wèn)題可能解決得十分干脆。它不僅是解決問(wèn)題的有力手段,而且推動(dòng)了數(shù)學(xué)的發(fā)展,開(kāi)辟了數(shù)學(xué)領(lǐng)域的新天地.數(shù)學(xué)是在歸納、發(fā)現(xiàn)、推廣中發(fā)展的。反證法在數(shù)學(xué)的發(fā)展中功不可沒(méi)。反證法不但在數(shù)學(xué)的發(fā)展和證明中有同等重要的作用,而且,在學(xué)習(xí)、領(lǐng)會(huì)和深入鉆研數(shù)學(xué)的時(shí)候,也離不開(kāi)反證法.因?yàn)闂l件的強(qiáng)弱,使用范圍的寬窄,都需要用反證法作對(duì)比,才能加
3、深理解,如果命題有錯(cuò)誤,證明有漏洞,也只有靠反證法去證實(shí),并從反證法中得到修補(bǔ)的啟示。反證法是一種重要的反證手段,往往會(huì)成為數(shù)學(xué)殿堂的基石。學(xué)會(huì)構(gòu)造反證法是一種重要的數(shù)學(xué)技能。反證法的重要性要想充分的發(fā)揮出來(lái),關(guān)鍵還在于具體的作出所需的反證法。至于反證法的作法,也如證明一樣,因題而異,方式多變。1反證法的基本思想反證法是一種間接的證明方法,它的基本思想是“否定推理矛盾肯定”,這種證明方法之所以令學(xué)生難以理解,是因?yàn)樵谧C明過(guò)程中,每一步的
4、結(jié)論到下一步完全符合邏輯,但每一步的結(jié)論卻其實(shí)不能發(fā)生,從邏輯的觀點(diǎn)來(lái)看,反證法實(shí)際上是通過(guò)證明與命題邏輯等價(jià)的命題為真,從而間接證明了命題,顯然這個(gè)等價(jià)命題的條件中BA?BA?含有命題的結(jié)論的否定,反證法歷史悠久,曾被用來(lái)解決數(shù)學(xué)中許多重要結(jié)論.BA?B所謂反證法是指通過(guò)證明論題的否定論題不真實(shí)而肯定論題真實(shí)的方法.通常包括以下三個(gè)步驟:(l)反設(shè)—假定原命題的結(jié)論不成立;(2)歸謬—根據(jù)反設(shè)進(jìn)行嚴(yán)密推理,直到得出矛盾;(3)結(jié)論—肯
5、定原命題正確。一般來(lái)說(shuō),如果命題的結(jié)論不易直接證明,結(jié)論的反面卻容易否定,那么反證法是可行的。但是由于數(shù)學(xué)命題的多樣性、復(fù)雜性,要對(duì)哪些命麗水學(xué)院2012屆學(xué)生畢業(yè)論文3命題“”,Axfxx??)(lim0即“”。??????????????Axfxxx)(0000有的滿足:使得其否定形式為”000)(000??????????????Axfxxx有的滿足命題“在上一致連續(xù)”,fI即“”。??????????????)()(002121
6、21xfxfxxIxx有只要使得其否定形式為“”02121210)()(00??????????????xfxfxxIxx但盡管滿足具體命題的證明是培養(yǎng)各種思維能力的主要渠道,怎樣的命題宜用反證法進(jìn)行證明,這還需要不斷的探索和總結(jié)。3數(shù)學(xué)分析中經(jīng)常遇到的幾類(lèi)問(wèn)題用反證法的證明數(shù)學(xué)分析中經(jīng)常遇到的幾類(lèi)問(wèn)題用反證法的證明要能熟練掌握一種解題方法,僅僅滿足于會(huì)用這種方法解個(gè)別題目是不夠的,還要在解題的證明中注意積累經(jīng)驗(yàn),總結(jié)規(guī)律,解決何時(shí)可以
7、用這種方法來(lái)解決的問(wèn)題,這有利于進(jìn)一步加深對(duì)這種解題的方法實(shí)質(zhì)的理解。下面就數(shù)學(xué)分析中幾類(lèi)常見(jiàn)的運(yùn)用反證法證明的命題類(lèi)型,舉例說(shuō)明反證法的應(yīng)用。下面從數(shù)列的極限及收斂性;函數(shù)的極限、連續(xù)性、有界及單調(diào)性;導(dǎo)數(shù)及其積分以及級(jí)數(shù)中的命題結(jié)論的特征出發(fā),輔之以具體例,介紹反證法的應(yīng)用以及它的特點(diǎn),證明簡(jiǎn)短而又有力。3.13.1數(shù)列的收斂性反證法的應(yīng)用數(shù)列的收斂性反證法的應(yīng)用定義1.1設(shè)為數(shù)列a為定數(shù),若對(duì)任何的正數(shù)ε,總存在正整數(shù)N,使得當(dāng)?
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 反證法在數(shù)學(xué)中的應(yīng)用
- 畢業(yè)論文反證法
- 反證法有關(guān)
- 畢業(yè)論文反證法在數(shù)學(xué)中的應(yīng)用
- 淺談數(shù)學(xué)中的反證法
- 課件反證法精
- 例談反證法在數(shù)學(xué)證明中的應(yīng)用
- 畢業(yè)論文淺談中學(xué)數(shù)學(xué)中的反證法
- 勾股定理和反證法
- 淺談反證法在中學(xué)幾何中的應(yīng)用-畢業(yè)論文
- 淺談反證法在在中學(xué)數(shù)學(xué)中的運(yùn)用
- 2019全國(guó)中考數(shù)學(xué)分類(lèi)匯編26反證法、命題與定理
- 畢業(yè)論文淺談中學(xué)數(shù)學(xué)中的反證法,審核通過(guò)
- 高中生對(duì)反證法的理解.pdf
- 反證法在自動(dòng)推理系統(tǒng)中的研究與實(shí)現(xiàn).pdf
- 等邊三角形及反證法
- 2014年中考真題——反證法綜合訓(xùn)練
- 數(shù)學(xué)分析
- 數(shù)學(xué)分析學(xué)期論文函數(shù)的微分
- 畢業(yè)論文反例在數(shù)學(xué)分析中的應(yīng)用
評(píng)論
0/150
提交評(píng)論