版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、線性代數(shù)發(fā)展簡(jiǎn)介線性代數(shù)發(fā)展簡(jiǎn)介中文版英文版ONONTHETHEHISTYHISTYOFOFDETERMINANTSDETERMINANTSByG.A.MILLERUniversityofIllinoisThehistyofdeterminantsisanunusuallyinterestingpartofthehistyofelementarymathematicsinviewofthefactthatitillustratesver
2、yclearlysomeofthedifficultiesinthishistywhichresultfromtheuseoftechnicaltermsthereinwithoutexhibitingthedefinitemeaningwhichistobegiventotheseterms.Manymodernwritershavebasedtheirdefinitionsofadeterminantontheexistenceof
3、asquarematrix.ThiswasdonefinstanceinthewidelyusedWeberWellsteinEncyklopadiederElementarmathematikvolume14thedition1922page304.Fromthispointofviewadeterminantdoesnotexistwithoutitssquarematrixjudgingfrommanyofthetextbooks
4、onelementarymathematicsitislikelythatmanystudentsconsiderthesquarematrixasanessentialpartofadeterminantsothatthetermdeterminantconveystothemadualconceptcomposedofasquarematrixacertainpolynomialassociatedtherewith.Whenthe
5、yspeakoftherowscolumnsofadeterminanttheynaturallyarethinkingofitsmatrixwhentheyspeakofthevaluethereoftheyarenaturallythinkingofthepolynomialimpliedbythetermdeterminant.Whenastudentwhoisfamiliarwithnodefinitionofthetermde
6、terminantexceptthedualonenotedintheprecedingparagraphmeetswiththecommonstatementthatthediscoveryofdeterminantsisusuallyribedtoG.W.LeibnizhenaturallyconcludesthatasquarematrixapolynomialwereassociatedbyG.W.Leibnizinaboutt
7、hesamewayastheyareassociatedatthepresenttime.Thisishowevernotthecase.InfactG.W.Leibnizassociatedapolynomialwithtwosquarematriceshederivedthispolynomialtherefrominawaywhichdifferswidelyfromtheonenowfollowedinexpingadeterm
8、inant.HencethequestionariseswhetheritisdesirabletoassociatethenameofG.W.Leibnizwiththediscoveryofdeterminants.Tothrowsomelightonthisquestionitmaybedesirabletoconsiderherethemotiveswhichledtosomeoftheearlydevelopmentswhic
9、harenowcommonlyassociatedwiththebeginningsofthetheyofdeterminants.Thethreesubjectswhicharecommonlyassociatedwiththeearlyhistyofdeterminantsare:Thesolutionofasystemofnlinearequationsinnunknownstheeliminationoftheunknownsf
10、romasystemofn1linearequationsinnunknownslineartransfmations.Thefirstofthesesubjectsisnaturallyoneoftheoldestinthehistyofmathematicswhengeneralmethodsthepolynomialswhicharenowusedtoexhibitthegeneralsolutionofsuchasystemof
11、equations.HencesomemathematicalhistianshavebeeninclinedtotracethehistyofdeterminantstomethodsusedbytheancientChinesetheancientJapaneseinregardtothesolutionofasystemoflinearequations.Inviewofthegreatdisparitybetweentheirm
12、ethodsthosenowcommonlyemployeditisdifficulttoexhibitanydefinitecontactbetweentheirmethodsourmodernideasofdeterminants.Whilethemodernstudentofmathematicsusuallybecomesfamiliarwiththetheyofdeterminantsfthefirsttimeinconnec
13、tionwiththesolutionofasystemofnlinearequationsinnunknownsitisprobablethatthesubjectoflineartransfmationsinfluencedmostprofoundlytheearlydevelopmentofdeterminantsifweadoptthedualmeaningofthetermdeterminantnotedabove.Infac
14、titappearsthatthefirstassociationofasquarematrixthecrespondingpolynomialinthemodernsenseisduetoC.F.Gausswasemployedinconnectionwithlineartransfmations.Meoverthefundamentalsubjectofmultiplicationofdeterminantswasdeveloped
15、inconnectionwithlineartransfmations.Thedateatwhichdeterminantswerefirstmultipliedisalsogreatlyaffectedbyourdefinitionofthetermdeterminantsincethepolynomialswhichresultfromsuccessivelineartransfmationswerestudiedbefethemu
16、ltiplicationofdeterminantsasthetermisnowcommonlyunderstoodwasconsidered.InthespecialcasewhenthedeterminantsareofthethirdderthetheemfmultiplicationcaneasilybeinferredfromthewkofC.F.GaussasgiveninthefifthchapterofhisnotedD
17、isquisitionesArithmeticae.Themainpointswhichweaimedtoexhibitinthepresentarticlearethatunlessthecontraryisexplicitlystatedthetermdeterminantshouldbeusedinthehistiesofelementarymathematicswiththedualmeaningimplyingbothasqu
18、arematrixacertainpolynomialassociatedtherewiththatthehistyofdeterminantswouldtherebybegreatlysimplified.Whilethegeneralfmulasinvolvedinthesolutionofnlinearequationsinnunknownsarecloselyrelatedtothedeterminantsitisundesir
19、abletoregardtheefftstodevelopsuchfmulasasdevelopmentsinthetheyofdeterminants.Theseparationofthesedevelopmentsthetheyofdeterminantsenablesustodistinguishsharplybetweenthedevelopmentofageneralalgebraicnotationwhichmadeitpo
20、ssibletousethemodernmathematicalfmulasthespecialnotationrelatingonlytothesubjectofdeterminants.Justastheuseofourdinarycomplexnumberswasfirstgreatlystimulatedbytheirappearanceinwkrelationtothesolutionofthecubicequationnot
21、bytheirappearanceinthecloselysothedevelopmentofthetheyofdeterminantswasfirstgreatlystimulatedbylineartransfmationsnotbytheusefulnessofdeterminantsinthesolutionofasystemoflinearequations.Theuseofdoublesubsmayservethesamep
22、urposeasthatofrowscolumnsinthesquarematrixofadeterminantitisofsomeinteresttonotethatG.W.Leibnizusednumberpairsascoefficientswhichservedthesamepurposeasdoublesubs.Thecreditcommonlygivenhimfthediscoveryofdeterminantsispart
23、lybasedonthisfact.InviewofthefactthatWebstersNewInternationalDictionaryiswidelyusedbyteachersofmathematicsitmaybedesirabletoreferheretoaslighterrwhichappearsthereinundertheterm“determinants“.Itiscrectlystatedthereunderth
24、atJacobiemployeddeterminants“powerfully“butthedate1823assignedfthisemploymentisnotquitecrect.AsJacobiwasbnonDecember101804hebecame19yearsoldlatein1823henceifthegivendatewerecrectitwouldimplythathewasayouthfulprodigyhence
25、hisbiographywouldbeofespecialinteresttoteachersofoursubject.Asamatteroffacthoweverhisimptantcontributionstodeterminantswerepublishedmuchlaterafterhehadmadeveryvaluablecontributionstowardtheadvancementofmathematicsalongot
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 線性代數(shù)英文專業(yè)詞匯
- 線性代數(shù)發(fā)展史
- 《線性代數(shù)》
- 線性代數(shù)
- 線性代數(shù)電子版教材
- 線性代數(shù)部分
- 線性代數(shù)應(yīng)用
- 線性代數(shù)紅寶書
- 線性代數(shù)教案
- 代數(shù)學(xué)發(fā)展簡(jiǎn)史及線性代數(shù)簡(jiǎn)史
- 線性代數(shù)題庫
- 《線性代數(shù)》試題
- 線性代數(shù)試題
- 線性代數(shù)1
- 線性代數(shù)題目
- 線性代數(shù)習(xí)題
- 線性代數(shù)試題
- 線性代數(shù)公式
- 線性代數(shù)b
- 《線性代數(shù)》教案
評(píng)論
0/150
提交評(píng)論