版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、四點(diǎn)共圓四點(diǎn)共圓【知識(shí)要點(diǎn)知識(shí)要點(diǎn)】四點(diǎn)共圓的判定方法:四點(diǎn)共圓的判定方法:1、若四個(gè)點(diǎn)到一定點(diǎn)的距離相等,則這四個(gè)點(diǎn)在同一個(gè)圓上(即這四點(diǎn)共圓)。2、若一個(gè)四邊形的一組對(duì)角的和等于180度,則這個(gè)四邊形的四個(gè)頂點(diǎn)共圓。3、若一個(gè)四邊形的一個(gè)外角等于它的內(nèi)對(duì)角,則這個(gè)四邊形的四個(gè)頂點(diǎn)共圓。4、若兩個(gè)點(diǎn)在一條線段的同旁,并且和這條線段的兩端連線所夾的角相等,那么這兩個(gè)點(diǎn)和這條線的兩個(gè)端點(diǎn)共圓。5、若、兩線段相交于點(diǎn),且,則、、、四點(diǎn)共圓。
2、ABCDPPDPCPBPA???ABCD6、若、兩線段延長后相交于點(diǎn),且,則、、、四點(diǎn)共圓。ABCDPPDPCPBPA???ABCD7、若四邊形兩組對(duì)邊乘積的和等于對(duì)角線的乘積,則四邊形的四個(gè)頂點(diǎn)共圓?!镜淅v典例精講】例1、銳角的三條高、、交于,在、、、、、、七個(gè)點(diǎn)中能組成ABC?ADBECFHABCDEFH四點(diǎn)共圓的組數(shù)是()A、組B、組C、組D、組4567EFHDABC例2、如圖,、、、四點(diǎn)在同一圓上,的延長線與的延長線交于點(diǎn),
3、且。ABCDADBCEEDEC?(1)證明:;ABCD(2)延長到,延長到,使得,證明:、、、四點(diǎn)共圓.CDFDCGEGEF?ABGFECABDFG例6、如圖,,分別是,邊上的點(diǎn),且不與頂點(diǎn)重合,已知,,,為DEABACmAE?nAC?ADAB方程的兩根.0142???mnxx(1)證明:,,,四點(diǎn)共圓;CBDE(2)若,,,求,,,四點(diǎn)所在圓的半徑???90A4?m6?nCBDECABED例7、如圖,為圓的直徑,為垂直于的一條弦,垂足
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 四點(diǎn)共圓練習(xí)
- 四點(diǎn)共圓的充要條件2
- 四點(diǎn)共圓基本性質(zhì)及證明
- 初三上專題四點(diǎn)共圓
- 2018數(shù)競平面幾何(四點(diǎn)共圓)講義教師版
- 19_3501664_7.巧用四點(diǎn)共圓.構(gòu)圓妙解向量模的范圍
- 高中數(shù)學(xué)競賽平面幾何講座第4講--四點(diǎn)共圓問題
- 傾情創(chuàng)強(qiáng)全鎮(zhèn)共圓一個(gè)夢(mèng)
- 《共圓中國夢(mèng)》ppt課件
- 《共圓中國夢(mèng)》教學(xué)設(shè)計(jì) [001]
- 吳樾父子共圓“英雄夢(mèng)”
- 眾志成城共圓教育夢(mèng)
- 相約海創(chuàng)周共圓中國夢(mèng)
- 五點(diǎn)共圓問題與clifford’s鏈定理北京師范大學(xué)張英伯2007
- 各種圓定理總結(jié)(包括托勒密定理、塞瓦定理、西姆松定理、梅涅勞斯定理、圓冪定理和四點(diǎn)共圓)
- 黨建扶貧“雙推進(jìn)”共圓蓮池小康夢(mèng)
- 初四作文教學(xué)的一點(diǎn)探索
- 初中數(shù)學(xué)共圓問題知識(shí)點(diǎn)與常考難題和培優(yōu)提高練習(xí)壓軸題(含解析)
- worth四點(diǎn)
- 共圓一個(gè)產(chǎn)業(yè)夢(mèng)引領(lǐng)21世紀(jì)世界鮮食玉米潮流
評(píng)論
0/150
提交評(píng)論